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Simple model for the DNA denaturation transition
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We study pairs of interacting self-avoiding walke!,w?} on the 31 simple cubic lattice. They have a
common originwé:w(z,, and are allowed to overlap only at the same monomer position along the ekiain:
# o for i # ], while o = o is allowed. The latter overlaps are indeed favored by an energeticgainis is
inspired by a model introduced long ago by Poland and Shdrhg@hem. Phys45, 1464 (1966)] for the
denaturation transition in DNA where, however, self avoidance was not fully taken into account. For both
models, there exists a temperatdig above which the entropic advantage to open up overcomes the energy
gained by forming tightly bound two-stranded structures. Numerical simulations of our model indicate that the
transition is of first ordefthe energy density is discontinugubut the analog of the surface tension vanishes
and the scaling laws near the transition point are exactly those of a second-order transition with crossover
exponent¢=1. Numerical and exact analytic results show that the transition is second order in modified
models where the self-avoidance is partially or completely neglected.

PACS numbe(s): 87.15.Aa, 64.60.Kw

I. INTRODUCTION and order of the DNA melting transitions, there are a number
of aspects that one might suspect to be relevant. In addition

The study of the nature of the DNA denaturation is a longto self-avoidance these include the stiffness of DNA, the
standing open problem. Experimentally a multistep behaviodifference in stiffness between single- and double-stranded
in light absorption as a function of the temperature was obDNA, the different properties oA-T andC-G pairs, and the
served already in the 1950see[1] as a review. This sug- helical structure of double-stranded DNA. Finally, one
gested a sudden sharp opening of clusters of base pairs &ould also consider the effect of “wrong” base pairings,
cooperatively melting regions. This scenario is reminiscentither between bases of the two different strands or between
of the behavior at a discontinuous first-order phase transitiorbases within the same strand.
in which the system changes its state from a double-strand to There seems to exist up to now no model that incorporates
two molten single-stranded chains. Since then, this scenariall these aspects. But there have been recent models where
has been verified and studied in great ddtajl some of them were included, and which seem to reproduce

Early theoretical attempts to model this transition couldthe sudden opening of base pairs. The common property in
not reproduce these phenomena. The first attempt with a onell of them is an entropic barrier that favors configurations in
dimensional Ising-like model in which the two states of spinwhich base pairs are far apart.
correspond to an open or closed state of the base pair, with a The “nonlinear model,” introduced ifi7,8], assumes that
favorable coupling between neighbor pairs that are in thehe stacking energy between neighboring base pairs depends
same statd2,3], reproduced a crossover between the twoon whether these pairs are in “helical” or “coil” statdse.,
different regimes but no thermodynamical transition. whether they are bound in a double string or)nbt a helix,

The first refinement consisted in taking into account thethis stacking energy is larger than in a coil. Transfer-integral
different entropic weights of opened bubbles and doublecalculations, molecular dynamics simulatiofd, and ap-
stranded segmenid], since the phase space region that twoproximate analytical method8] pointed out a first-order
terminally joined(but otherwise freeopen strands can ex- phase transition.
plore is bigger than the one accessible to a double strand of A recent model goes in the same direct{&j, in which
the same length. the helical structure is taken seriously. As a result, a me-

This model was solved using the entropic weights of self-chanical torque that tends to increase or decrease the winding
avoiding loops in Refd5,6]. In this way the self-avoidance becomes a new thermodynamical variable. A transfer matrix
between bases within the same loop is taken into accountalculation[10] shows that this model exhibits a first-order
but the other mutually excluded volume effects are com-phase transition in the temperature-torque plain, analogous to
pletely neglected. This simplified model displayed a smootfthe liquid-gas transition in the temperature-pressure plane.
second-order transition in two and three dimensions. Finally, according to a recent studl¢1], the effect of the

These models were, of course, only very rough caricatureleterogeneity in the DNA sequence—which amounts to a
of the true complexity of the problem. Even if we believe frozen disorder in the base pair binding strength—has no
that microscopic details should be irrelevant for the existenceffect on the order of the transition if the model contains no

entropic barrier, but it gives rise to a multistep energetic
landscape if a state dependent stiffness of the type consid-

*Electronic address: M.S.Causo@fz-juelich.de ered in[7] is introduced.
"Electronic address: B.Coluzzi@fz-juelich.de The case in which two directed polymers randomly inter-
*Electronic address: P.Grassbherger@fz-juelich.de act has been exactly solved in Ref$2,13 in generic di-
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mensions. The existence of a critical dimension above whichWhile we fix the starting point of the two polymers at a same
the disorder is irrelevant and a transition from a weak to arigin, wy= w3, we allow the end points to wander freely in
strong-disorder regime takes place has been discussed agpace. This is different from the Poland-Sheraga mpglg!
the correlation length exponent at the transition point hasvhere also the end points were forced to coincids,
been determined. _ o =3 . At least in the ideal case, the presence of this con-
In the present paper we consider a simplified model whergraint does not affect the order of the transition and this
all these features are disregarded, but—in contrast to the pahould be true also when the excluded volume interaction is
pers mentioned above—excluded volume interactions argyen into account. However the crossover scaling functions
fully incorporated. Our model consists of two interacting petween different regimes are not the same in the two models
self-avoiding walks, corresponding to the two single strandsand at the tricritical point, at which the transition takes place,
with the same origin on ad cubic lattice. Each monomer jfferent entropic exponents are found. In the excluded vol-
corresponds to a base and is supposed to have its complgme case there is also a topological subtlety: if chains are
ment at the same position in the other chain. Two monomergeformed continuously, nontrivial knots are forbidden if the
with different positions in the two chains are not allowed toend points never separate. In contrast, in our thermodynami-

occupy the same lattice site, whereas the overlap of monQs treatment any knots are allowed. But this should not have
mers at the same position is favored by an energetic gain mych influence either.

that represents the binding energy. Base-pair misalignments
are forbidden. We consider the homogeneous case, where all
the binding energies are equal.

In our approach we focus mainly on the two conflicting The system can be represented as a sequendesofer-
tendencies of the system: the entropic gain due to the largémposed self-avoiding walks (SAWS of length
number of configurations accessible to the two open strands,, ... ,ny [n=0 with n=3,(n+1)—1], which corre-
of the system on one hand and the tendency to build enespond to helical domains in DNA where base pairs are bound
getically favored links between the two strands on the othentogether, which alternate wittM —1 bubbles of lengths
The necessity to balance these opposite tendencies when, ... py_1(p«=1; molten regions On the lattice, they
minimizing the free energy leads to the finitephase tran- are self-avoiding polygons of lengthp2. The last part con-
sition between the high temperature swollen phase, and thsists of two self-avoiding walks of lengths
low temperature phase in which finite fractions of the chains
overlap.

I1l. APPROXIMATE TREATMENT

M M-1
r{n.ph=N=2 ni- 2, p;. (3.1

Il. MODEL
All the elements of the sequence must be mutually avoiding,

Let us define twaN-step chains with the same origin 0N 4t means that two monomers can occupy the same position

H 1__ 1 1 2 __ 2 2 . . .
the 3dk lattice e« _1{(”02" .oyt and o ={ep, ....@\}  in the space only if they occupy the same position along the
with wfe Z* and wy= wj=(0,0,0). chain.
The Hamiltonian(or I‘?.'[hezl’ Boltzmann weightthat de- If this last constraint is neglected, one can factorize the
scribes a configurationaf™, w”) of our system is problem and write a generating function for the system in

terms of the generating functions of single self-avoiding
walks, polygons, and a pair of self-avoiding walks starting at
the same origin. This leads to the “almost unidimensional”
phase transitions d#,5].

The partition sum in the fixetlk ensemble can be written

e HRT=TT (1- 8,1 w2 (1= 8,1 1)
P4 bl L
~ N
X (1= 8,2 ,2)ex _—62 St o2 |- (2.1)
W? KT ~ oo | . as

Thermodynamic properties of the system only depend on the Zn= >, Sr({n]p})]__[ WiV, (3.2
reduced variable= — ¢/KT that we will use in the follow- {n.p} '

ing. The partition sum can therefore be written as where the sum runs over all possible partitions into helices

and bubbles. W,=e"¥Tc,, V,=Cpp, and S

N
_ en =Cyr(in,py - Herec, is the number of self-avoiding walks of
ZN(G)_EO Cnn€ @2 Iengtﬁ n,p}\ivhile Cyp is the number of self-avoiding polygons
of length 2. This partition sum is clearly an upper bound to
where n is the number of contactsy=cardi|w!=w?,i the true one, since many configurations are included, which
>0}, andcy,, is the number of distinct configurations with ~ are not allowed due to self-avoidance. ,
contacts(notice that(n)/N is the natural order parameter The simplified problem can be easily solved in the grand
Alternatively, by introducing a fugacitg we can go over to qanonlcal eniemble, ie., by. considering the generating func-
the grand canonical ensemble with partition sum tion G(2) =={_oz"Zy. We find

o

Gw(2)Gs(2)

e N
G(z,e)=NZO ZNZN(G)ZNZO zo Moy e (2.3 G(z)= ey (3.3
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where G§(2)=2r_0Z"Wy, Gu(2)=35_0o2"VN, Gg(z) it appears immediately thaty=e %u, zs=1/u? while

=37 _,2Sy. The critical behavior of the system is deter- Gy(2) is finite atzy=zs=1/u? (since one has 2 a>1),
mined by the singularity of5(z), which is closest to the but it diverges forz>z,,.

origin, and it can be studied by using the asymptotic forms In the high temperature regime, i.e+ 0, the singularity

for the number of self-avoiding walks and polygong of Gg is the first to occur and the critical behavior is that of
~uNNY"1, ¢ = uNN"2, whereu is the connectivity con-  two self-avoiding walks. This means that the system is in the
stant, which is a lattice dependent quantity. Two cases ar@enaturated state, and the corresponding free-energy density
possible: the singularity closest to the origin comes fromis given by f/KT=Inzs=—2Inu. This is just the entropy
Gg(2) or from vanishing of the denominator. Let us focus ondensity of two self-avoiding walks with the same origin.

the casaedl=3. Recent estimates of the critical exponents are SinceG¢,(2) is an increasing function of, for decreasing

g:2—dv=0.23_723(_4) (where we used the estimate o peraturegincreasinge) the zerozy, of the denominator
=0.58758(7) given in14]) and y=1.1575=0.0006[15]. in Eqg. (3.3 decreases and finally becomes lower tlzgn

e o e o T TSI pon: crtesponds o th meling vansin
Since ot can also be sh(_awn that the Qrder of th.e transm_on is
determined by the singular behavior &,(z) in 1/u?, it
(zu?)N depends on the value of the exponent@ [5]. SinceGy,(2)
is regular in 142 at e=€*, it plays an irrelevant role at the
transition point and this is independent from the valueypf
- 2N (34 e, the fact that the helical domains are self-avoiding or
Gy(2)= D, (27 ideal does not affect the order of the transition. The free
N=o (2N)1~” energy fore=¢€* is given by

)

et N
B eo-3

Gi(2)=2 o 2Nz

N=0

—2Inpu+Cle—e)Y"a4+ = for 1<2—a<?2

fKT= —2Inu+C(e—€e*)+ ... for 2—a>2. @9

Since 2- a=1.76276(6)[14], the approximate solution pre- —cc. In this regime, we actually have two different phases,
dicts a second-order phase transition. corresponding, respectively, to molten and undenatured
The main approximation involved in the above treatment(double-strandedchains. It is intuitively clear that a nonzero
is that it neglects excluded volume effects that come frondensity favors the presence of contacts, because contacts in
the mutual interactions of different bubbles, segments, andur model reduce the volume occupied by the monomer
free ends. As already pointed out, this means that we ovepairs. Therefore one expects that the transition point between
estimate the partition function, and the transition could behe molten and double-stranded phases takes place at a lower

sharper than predicted by this simple model. value of the interaction parameteff*"tz) when the fugacity

On the other hand, one can immediately use the aboveincreases. This phase diagram is shown in Fig. 1.
arguments to infer that the transition is certainly of second Notice that the boundary between the molten dense phase
order in the case of interacting random walks, sincea2  and the short chain phase is strictly horizontal, as the attrac-
=3/2 there, and there are no excluded volume effects to beive interaction plays no role along this transition line. Quali-
taken into account. We present in the Appendix an exactatively, this phase diagram is very similar to that for a poly-
analytical treatment of the ideal case. There we also evaluat@er attached to an adsorbing surf§té,17 and to surface
numerically the melting value*, and we study the scaling transitions in magnetic systeni$8]. But in contrast to the
laws whose general structure will be discussed in the neXatter, the boundary between the two dense phases is not
section. horizontal.

Using the ¢, €) representation, it is clear that the melting
transition is a tricritical point. Its analog in magnetic systems
with surfaces is the special poifit8]. The curvez=z.(¢)

Again it is more easy to discuss the problem in the grandonsists of two parts, a horizontal one for ¢* and a tilted
canonical ensemble, with the fugacityconjugate toN. The  one for e>¢€*. At the melting point £*,€*), one sees a
limit N—o in the monodisperse ensemble corresponds tehange of critical behavior. At finite largs, for e<e* the
z,/z.(€). critical behavior of a SAW of length1? is observed, while

Valuesz>z.(€) only make sense after placing the systemfor e>¢e* the system displays a double-stranded behavior.
in a (large buj finite volumeV. The two polymers are al- At fixed N, for e neare*, a crossover between the tricritical
lowed to grow until they fill the volume with a finite nonzero behavior and the double-stranded ore>E*) or between
density p=2(N)/V, which remains constant in the limit  the tricritical behavior and the N-SAWs one €<e€*) is

IV. SCALING LAWS
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0.32 - - - T - - - For e>€* andz—z.(e) from below,G(z,€) must scale
+ as the partition sum for adouble-stranded SAW, G
03 | . ~const[ z.(e) — z]”. ThereforeF(x) must have a singularity
at some finite value, where it diverges as
0.28 - + .
+ const
double-stranded chains F(X)~———, (4.3
0.26 - (Xo—X%)”
N molten
0.24 - chains and for smalle— €*
022 ¥ —zi(€)~Xg Y (e— ). 4.4
0z | Thus the crossover exponett describes how the critical
) short chains fugacity depends on the contact energy in the bo(nuh-
. molten phase.
0'182 o5 Finally, for e<e* and z,z* we must have G
q = exple) ~const/@¢* —z)”. This is the case if
FIG. 1. Phase diagram. On the horizontal axis is plotted the F(X)~(=x)7, X——x (4.9

Boltzmann factolg=e€ per bound monomer pair, while the fugac-

ity is plotted vertically. Below the continuous line, chains are shortWith some poweio, and

with an essentially exponential distribution in chain length. At this N

line, the average chain length diverges. To the left of the t(imhel Y+ do=y. (4.6
tricritical) point, the line is horizontali.e., the critical fugacity is
independent ofy and coincides with the value for normal SAWs
The “molten chains” and “double-stranded chains” phases are
well defined only for finite volumé/, with the chain lengtiNeV. N — 1 b
The numerical determination of the phase boundaries is discussed Zn(€)=p(e)"NY ~"W[(e—€")N?] (4.7)

in Sec. VI. While the continuous line is very precigeror less than . . )

the width of the ling, the uncertainty of the molten/double-stranded With x(€) =1/z;(¢). In order to get the right asymptotics for

phase boundary is at least as big as the symbol size. e# €*, the scaling functionV’ (x)—which is related td=(x)
by a Laplace transform—must scale [a&?~ Y4 for x—
observed ag tends toe* . The width of the crossover region * .
decreases aN increases. The scaling of the energy is obtained by differentiaihg
In the following we shall discuss the scaling laws thatwith respect toe. It is [16]
would be expected if the melting transition is second order.
If it is first order, it seems at first not clear whether the usual (e=e)Y7IN  fore>e*
scaling scenari(bwh_ich is based on the exi_stence of a divgr- En(e)~ N¢ for e= e* (4.8
gent length scalestill holds. We shall see in Sec. VI that it
does hold even then. An analytic study in the ideal dase
excluded volumgis shown in the Appendix.
Near a tricritical point, the partition sum is expected to
scale as

Performing the Laplace transform one checks easily that Eq.
(4.1) is obtained with the ansatz

1(e* —¢€) for e<e*.

From this we see that a first-order transition is obtained for
¢=1. The scaling of the specific heat is obtained by deriving
once more with respect te. One finds that the peak of the
. specific heat scales ad?4"! and is located ate*
G(z,€)=(z"—2) " F[(e—€")(z*-2)?], (4D  +constN?.
One can also look at the system from an extended scaling
with ¢ being called the crossover exponent. The scalinghoint of view[19—21. We define two correlation lengthis

function F(x) is nonsingular ak=0, from which follows and &,. The second, which we call thgeometricalcorrela-
tion length, is identified with the Flory radius of any of the
Zn(e*)~(Liz*)NNY" L (4.2)  two polymersé,=((wy— 03)?)Y?=((wd— w3)?)*2. It fol-
lows the scaling lawg,~N" in any phase. The firsgg, is the
for the scaling exactly at the melting poiht. thermalcorrelation length. It is defined as the mean diameter

of the molten “bubbles.” In the bound phase we expect it to
scale withN and (e— €*) in the same way as the end-to-end

; 2

The value ofy* in the ideal case is computed in the Appendix. dIStalmgel,Z between  the . two SFr,and_SglocRe”d_«wN
We find y* =1+ ¢ [see Eq(A40)]. On the other hand, if both the o)) If thg denaturatlo_n tr.ansmon is second order, the
extremities are bound together as in the Poland-Sheraga model, ittgermal correlation lengtlE; inside the bound phase con-
easy to see that the crossover expongmoes not change, but the Verges in the limiN—c to a constant that depends epbut
absence of¢(z) in the numerator of Eq(3.3 gives a different  the value of the constant diverges as, e*. Exactly ate
singular behavior a¢* . It is simple to see, following the same lines = €* it should scale as a function bfin the same way a%,,
as in the Appendix, that this giveg® = ¢. i.e., both correlation lengths should be equivalent.
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In contrast, in a usual first-order transition we would ex-highest statistics, we used three main runs at different tem-
pect that the thermal correlation length remains finitdNas peratures, plus a number of runs with smaller statistics to
tends to infinity also in the limig\ e*, but we will see that sample the highn tail.
in our system this picture does not hold because of vanishing
of a surface tension. In approaching the transition point from
the molten phas®&,,4scales as the Flory radius and is then V. SIMULATIONS

not relatgd 0. . We use the pruned-enriched Rosenbluth mettiRERM)
sca?liigolnggsmTh: fhue%?ncglp:;?:rﬁégrﬁnt\f’véh?;?g\éz;netge [25], yvith Ma_rkovian _anticipgtior[Z?], which is particularly
thermal correlation length exponent t;y assuming £ effective to 5|m_ulate interacting polyme_[r%]. In the present
~(¢*—€)~"T in the limit where we t;ke firsiN—s o antl case th<=T algonthm_ was |mplem9nted m_such a way that the
then e ¢* —0. One hag20,21] two chains grow simultaneously.e., adding one monomer
: ' to the first chain, then to the other, again to the first, and so
b=vlvr. (4.9 or?). F(_)IIowing the PERM strategy, the Who_le system grows
according to the Rosenbluth meth@26] while configura-
This can be understood in two ways. First, one can invokdions with very large/very small weight are cloned/pruned.
the fact thaté&,~ & when e=€*. Then Eq.(4.9) expresses ' ne bias used during the Rosenbluth sampling is corrected
just the fact that£?/ de and &2/ 9z are related by Eq4.4). by mult!plylng the weights of the configurations with the
Alternatively, one observes thBx=1/» is just the(Haus- ~ @PPropriate factor.

dorff) dimension of the system, whence the specific heat ex- 1h€ k-steps Markovian anticipation consists in an addi-
ponent a;=2—1/¢ takes the familiar hyperscaling form tional bias based on the statistics of sequencds+af suc-

ar=2-Duy [21]. cessive steps[27]. Iq di_mension d, Iabeli_ng py s
Let us finally discuss histogram methods that have be=0:--.,2d—1, the A directions on a hypercubic lattice and

come increasingly popular during the last years. They proPY S=(S-«, .- -S0)=(SS), a given sequence of steps
vide expectation values at temperatures different from thos&Nding inso, one considers the statistical weighy (S) of
used in the simulations. In addition, they are used to studf!l N-Step chains, which followed the sequeriduring the
finite lattice size effects. Near an ordinary temperatureStepSN—m—k, ... ,N—m. The bias in &-step Markovian
driven critical point, the energy distribution scales in a finite@nticipation is then given by

spin system of length as[22,23

2d—-1
P (E)~L Yp[(E—(E.))/LY"]. 4.1 ,
L(B)~LTTRIE(EILT]. (410 P(s0/9=Pym(SS0)/ > Pum(ssy). (5.
This is different for a first-order transition where the distri- So=0

bution has two peaks that get increasingly separated when
the system size is increased. The minimum between the t
peaks becomes exponentially deggith the depth controlled
by the surface tension between the two phasasd the
peaks become arbitrarily sharp in the lirhit- .

Instead of studying the distribution for fixddttice size,
in the present case it is natural to study it for fixed fimten
view of E~N?, one might now expect a similar behavior

Wehis means that a step in the directisp is chosen more
often if the previous experience tells us that it will be more
successful in the fam{ steps ahegduture. These biases are
obviously compensated by a facted/p(s,|s), to get a cor-
rect sampling. In our simulation the weigh®g, ,(S) were
estimated in a preliminary run. Moreover we usedadrhoc
bias for the present model. When the second chain has to

INEY) ® perform a growth step and the end of the first one is in a

Pn(E)~N"“p(E/N?). (4.19 neighboring site, we bias this step towards the end of the first

In Sec. VI we show that this is indeed true for the melting€h&in with probability=e*, - _
transition of ordinary random walks in dimensions<é One can further increase the probability of sampling con-
TSR ; _ figurations with many contacts by favoring growth steps that

<4.

4. There the transition is second order wifh=d/2—1, reduce the end-to-end distance | w”— w?|. We found that
and Eq.(4.1]) is correct. But surprisingly Eq4.11) is also i - [ i
correct for ordinary random walks in dimensioms>4, Such a biagwhich has to go to zero far— ) can substan-
where #=1 and the transition is first order. This can be tially enhance the sampling efficiency, but leads occasionally
understood as a vanishing of the analog of the surface tef® “dlitthes” where a disfavored configuration is encoun-
sion: the cost involved in going over from a molten domaintéreéd nevertheless, with exceptionally large weight. We
to a bound domain does not increase withThis is obvi- therefore use only the previously described bias.

ously due to the fact that our system (&t least topologi- As one could expect for a first-order transition, fluctua-
cally) one dimensional. Indeed we will show in Sec. VI that tions neare* arevery strong, particularly on the probability
the same is also true for SAW melting h=3. distribution of the energy. A large part of our statistics was

We should add that histograms are particularly easy to
obtain with our method of simulatiofsee Sec. ¥, since it
gives us absolute estimates of partition sums. Thus combin-2Thjs can straightforwardly be extended to more than two chains
ing results obtained at different nominal energies is straightand allows then very efficient simulations of star polymers, in par-
forward and does not pose the problems found in Metropolisticular near to collapse transitions where other methods become
type simulationg24]. For Fig. 5, e.g., which involved our inefficient.
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FIG. 2. Scaling plots of the average contact number for random walksliar@l of the corresponding probability distribution et
=¢€*. Heree* =1.077 26 andp=1/2 are the exact valudsee Appendix

collected in order to obtain clear data fB{E) up to large figurations withn contacts by a factor exgf). The study of

chain lengths lI=3000, i.e., a total of 6000 monomegrand  the ideal system, which is analytically solved in the Appen-

for a very wide range oE. This aim was achieved by per- dix, allows us both to test the efficiency of the numerical

forming independent runs at five different values of the in-methods and to verify the peculiar first-order transition pre-

teraction strengthe=1.356, 1.345, 1.343, 1.338, 1.330 and dicted in five dimensions. We limit the analysis to simple

by reweighting results. AN=3000 about ﬂ)lndt_apendent hypercubic lattices withl=3 and 5.

configurations were obtained for each interaction strength.

The errors were evaluated with the jackknife method, i.e., by 1. =3

using the fluctuations between independent runs. Since we ! .

have only few such runs to compare with, the errors should " 3d one finds a smooth second-order transition when

be considered just as rough estimates. moving along the solid line in Fig. 1, charactenzed by a
Moreover we made runs up to very large chain lengthsralue ¢=1/2 of the crossover exponent. In FigaPwe plot

(N=8000) in order to study the largé-behavior of the (n)/N? as a function of é—€*)N?. The behavior agrees

partition function and of the end-to-end distance. We alsovith the expected scaling law, i.e., the data are compatible

performed simulations at finite densitwhich will be dis-  with the exact values of* and of¢. Furthermore, finite-size

cussed more in detail in the followingn order to locate the corrections appear to be small. The probability distribution

molten/double-stranded phase boundary. In all these cas®{n) exactly at the critical point, properly rescaled by

the statistics was very higltypically at least 10 attempts or  and plotted against/N?, is shown in Fig. ). The perfect

“tours” in the notation of[25]), but the efficiency of the data collapse confirms both the validity of the scaling law

method deteriorates quickly if one reaches very long chainsgq. (4.11) and the efficiency of the numerical method.
very low temperatures, and high densities. In contrast to

usual (Metropolis-type simulations, the problems are not 2. d=5
due to long autocorrelatiorisuccessive tours are completely S .
uncorrelatedl Rather, in these difficult situations most tours Let us now wm on the more intriguingdscase. It IS
die before reaching long chain lengths, and those which dghown n t.h? Append|x that the systeml undgrgo_es a first-
survive have very uneven weights. Thus it might happen tha‘?rder transltlpn, since the contac_ts _de_n$my/N IS dISCOI’l?
even for very large samples nearly all the statistical weight id"Uous ate™ in the thermodynamic limit, but shows scaling
carried by one or two tours in the wings of the distribution of With @ value¢=1 of the crossover exponent. We present in
tour weights. Fortunately, this can be checkgd], and we Fig. 3 fiata .forP(n.) at the analytically calcula’ged critical
are confident that this problem did not seriously affect most¥@lu€€” . This plot is completely analogous to Figh?, but
of our data. As for usual growth algorithms with enrichmentUSes the exact valug=1 (see Appendix We see now defi-
the CPU time that the algorithm needs in order to generate apitély larger corrections to scaling. Also, the curves are
independent sample of lenghhgrows likeN2, with an am-  Slightly cap convex, which shows thah)/N is not strictly
plitude depending on the bias uskas]. discontinuous ake=€*. But thls is obwously_ a finite-size
As a last remark, we note that also in the ideal case in fivéfféct. ForN=1000, the maximum oP(n,e) jumps from
dimensions, where it is much more simple to get good sta N=0 to n/N=c*~0.4 whene is increased frome* to
tistics, the use of a bias is necessary for correctly sampling-000%. In the limit N—<c, on the basis of our numerical

the energy distribution in a reasonable CPU time. results we can conjecture thB(n,e*) is flat betweem/N
=0 andn/N=c*.
VI. RESULTS AND DISCUSSION On the other hand, it is obvious thB(n) does not have

the double-peak structure familiar from usual first-order tran-

sitions. In these usual cases, the valley between the peaks is
Before discussing self-avoiding walks, we study first thedue to surface tension: States with the order parameter be-

case of ideal random walks, but, of course, weighting contween the two peak values contain more than one domain

A. The ideal case
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"N=250 —— againste. In Fig.4(a), curves for different chain lengths cross
nearly at the same value, which is also the value the spe-
cific heat maximum is moving towards. Within the expected
uncertainty, it agrees with the predictetl. But when trying
to make the data collapse by plotting them against (
., | —e*)N?, we see again strong corrections to scaling. Indeed,
LY such fits using(n)/N® would give ¢=0.93 instead of¢
* =1. Another estimate for the crossover exponent can be re-
" covered from the way in which the maximum of the specific
. heat moves toward* as the length of the walk increases.
s Since in the crossover region the specific heat follows the
X crossover scaling, the position of the maximum~Nbfinite is
0.1 . . . . . M- shifted by a term proportional th~¢, ¢>1 by a small
0 0.1 0.2 0.3 0.4 0.5 06 0.7 amount. These deviations from perfect scaling give us a hint
/N of what we have to expect when now going over to self-
avoiding walks.

(n)

NP
N
+

FIG. 3. Probability distribution of contact numbers for random

walks in & at the exact critical value* =2.001 15.
B. Self-avoiding walks,d=3

and are therefore suppressed by surface tension. In the
present case, there is no penalty for a transition between a 1. Scaling of P(n) and properties derived from it
molten and a double-stranded domain, explaining why all |n Fig. 5 we show IP(ne*), where e*=1.3413
configurations with 8&n/N<c* can be equally populated +0.0004 is our best estimate of the criticalvalue. This
(for magnetic polymers, a similar scenario was proposed redistribution is clearly not convex, in contrast to the case of
cently in[30]). Notice that scaling as formulated in the pre- five-dimensional ideal random walks studied in the previous
vious section would not hold for usual first order transitions,sybsection. Instead, there is a peakat0. Due to this peak,
since the valley between the peaks becomes exponentiathe maximum of P(n,e) jumps discontinuously where
deep in the thermodynamic limiR~exp(~aL"™) for sys-  passes througk* (see Fig. 6. Apart from this, the situation
tems of linear siz¢.. Formally, this can be reconciled with s very similar. We see again substantial corrections to scal-
the present case by noticing that our polymers have topologing, but it seems quite clear that scaling works witk 1. In
cal dimension equal to one. particular, the depth of the valley between the peak-ad

Related to this are strong fluctuations in the separation 0fnd the shoulder at/N=c* ~0.5 does not increase witH.
the two chains in the double-stranded phase. Indeed, a§nd, what is more important, the value of does not sub-
proven in the Appendix, the average end to end distancgtantially decrease withi. This is our strongest numerical
diverges as¢;~(e—e*) "2 as the critical point is ap- evidence for the transition to be of first order. It should be
proached frome> 6* . This shows that the “thermal” corre- noted that here we are Considering quite |0ng Chaimsto
lation length exponent ig;=1/2=1/D and a7=2-Dvy  N=3000) and that the data foi=2500 and forN=3000

=2- ¢.71: 1. are nearly indistinguishable.
In Fig. 4 we plot the contact number densitgft pane) Deviations from the scaling behavior are seen mostly for
and the specific hedtight pane], large n/N. There, the distribution becomes increasingly
steeper with\. This was seen also for ideal random walks in
9B Ky, 2 d=5. It is indeed easy to understand. At lamgeve expect
C=N""—== e——=N e[(ﬂ >_<n> 1 en n n—N ;
JT de P(n)~e"(N/n)"(1—n/N)""", which does not follow our

(6.)  scaling law but is in qualitative agreement with our data.
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FIG. 4. Average contact number and specific heat per site for random walld in 5
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10 No500 do not allow any guess on the correction to scaling effects.
N=1000 - In summary, these results show that the melting transition
00 for interacting SAWs in three dimensions is first order, while
N=2500 +--=-- the analogous transition for interacting ideal walks in three
N=3000 »--- dimensions is second order. This agrees with our expectation
= that excluded volume effects should make the transition
s 4l sharper. We should add that we also performed simulations
z of a third version of the model, in which the two polymers
were self- but not mutually avoidin@lata not shown While
two monomers of the same chain were not allowed to occupy
the same site, two monomers from different chains were al-
lowed to do so, and this contributed to the energy if and only
01 if the indices of the monomers were the same. For this inter-

0 011 012 013 014 0i5 0.8 mediate model we found B(n) very similar to Fig. 5, but
n/N with a less pronounced peak &0 and a very small non-

S convex region. Therefore we are not sure whether the tran-
FIG. 5. Probability distribution of the contact numbers for gition in this model is first or second order.

SAWs in 3d at the estimated critical valug® =1.34134).

Accordingly, also the scaling gin)/N becomes poor for 2. The thermal correlation length

large €, as seen from Fig. (B). If we try to optimize this Up to now we only looked at the scaling behaviorRiin)
scaling plot, we would findp~0.94. But we know that this and at quantities that are related to it straightforwardly. We
would be wrong since this would put too much emphasis orinentioned already in Sec. IV several scaling, laws that are
the regionn/N~1 in the contact number distribution, which less directly related.
we know to be not scaling. The most interesting ones concern thermalcorrelation

We face a similar situation when looking at the specificlength (see Sec. IY. In the double-stranded phaseX e*)
heat. As seen in Fig. 8, the height of the maximiigee Fig. we can identify it with the rms distand®,,qbetween the end
9(a)] increases roughly<N, which would correspond te points of the two chains. Numerical results for the latter
=1, but a least squares fit of our data shows an effectivéboth for e>¢* and fore<e*) are shown in Fig. 10. For
exponenty<1. Since we are working wWitlhN=<3000, in a  €>¢€*, Repgtends forN—  to a constant that diverges when
regime which is far from the critical one, we expect that ourthe tricritical point is approached, showing that there is in-
estimate is biased by the presence of corrections to scalingeed a divergent thermal correlation length, which is inde-
Anyway no clear trend in the computed exponent is obtainegpendent of the system size for large systems. Exactly at the
from fits of data with cuts corresponding to increasing valuedricritical point we find Rg,q~N", showing that there the
of N (see Table)L All the obtained values are compatible in thermal and the “geometrical” correlation lengtthe Flory
the statistical errors, but g? analysis indicates that our er- radiug coincide. The latter is also known from polymer ad-
rors could be overestimated. Nevertheless the central valugorption to a wall, see, e.d.16,17. The divergence of;
of the effective exponent increases with the increasing of=limy_...RZ,4 for e—e*+0 is shown in Fig. 11. We see
Nmin- This could indicate the presence of corrections to scalthat thethermal correlation length exponent;, defined by
ing. The last value obtained fdd=1500 is compatible with &~ (e—€*) ™ "7, agrees with the Flory exponent(the geo-

¢d=1. metrical correlation length exponent Since ¢=v/v;
On the other hand, fitting the shift of the position of the [20,21], we find againg=1.
maximum, which is shown in Fig.(B), one would get¢$ For e<e* we also haveR.,,~N". But in this regime,

=1.31(14). In this case the large statistical errors on our datR.,qdoes not scale as the thermal correlation length. Instead,
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we can identifyé; with the average diameter of small molten
“bubbles” (which we did not measure since our algorithm
would give very large errojs Since SAWSs in three dimen-
sions are not recurrent, large bubbles do not occur in th
molten phase, ang, is finite and decreases with decreasing
€.

Finally, end-to-end distance distributions are shown in
Fig. 12. Fore<e€* they coincide for largeN with the end-
to-end distance distributions of noninteracting SAWs of
length 2N, except for a region of very small distances, which
becomes irrelevant in the limi—oo. More precisely, if we

denote withcy(R) the number ofN-step walks whose end
points are at a distand®=|R| apart, we have

fu(x)=(2d)”R% Py (R)

B cn(R)
=(2d) ¥RE
> cn(R)

R

~f(x)[1+O(N"4)], (6.2
wherex=(2d)*?R/Rgnq, f(X) is a universal function, andl

is a correction to scaling exponent. As showh38], f(x) is
well approximated by a phenomenological representatio
given first by McKenzie and Moorg31,32. A comparison
with the latter is shown in Fig. 13. For smaltthe attraction
between monomers is felt arfg(x) is larger than for ordi-
nary SAWSs, but this effect disappears fér—, as long as

€ is strictly smaller thare*. The transition between the re-
gimese>e* ande<<e* is not through a double-peaked dis-

tribution as one might expect for a first-order transition, but

there is an approximately flat plateaueat €* .

3. The molteridouble-stranded phase transition

The boundary between the two dense phases in Fig.
(crosses was obtained by taking finite lattices of site

with periodic boundary conditions. During the simulation we

measured only the energpnumbern of contactg and the

partition sum. The phase transition is seen as a rapid increas

of (n) when the monomer densigy=N/L? increases above
a valuep(€). Let us definez;(€) such that

CAUSO, COLUZZI, AND GRASSBERGER
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Tt the transition were second ordez,(e) would be the criti-
cal fugacity at the considered value @fBut our simulations
show clearly that the transition is first order. In this case,
there is a second value of the dengitfe) > p4(€) such that
the system is in the double-stranded phase whep,, in
the molten phase whep<<p,, and in a mixed phase in be-
tween. Equation(6.3) holds in the entire intervap,;<p

p2-
For most values ofe we usedL=32, only for e

>1.3 (@=3.7) we used larger lattices of size up to®64
Using the algorithm as described in Sec. IV we were able to
see the first thresholgl;, but not the second one. Obviously,
our algorithm is not efficient enough. Also, the increase of
(n) was too slow forp>p;. On the other hand, lattices of
different sizes gave roughly consistent valuepof The al-
gorithm became much more efficient when we based the
“population control” (copying and pruningon weight fac-
tors calculated with a larger value ef than that used for
evaluating average valueeve used mostlye=¢€*, but
slightly larger values also worked wgllThis is easily under-
stood. When the density is high enough that double-stranded
gonfigurations would be favored over molten ones, our en-

B
o
N=2000 +—a— i
120 | N=2500 »--=-- IR
N=3000 - & %1;
100 | L
iﬂm ®
O 80 £ ™
™ »,
60 | - E
*
< 40t £
' P
20 ¢ ++*§§*:§g§5m t$§;;;;;*+**+++-
PRI Ll o
O 1 1 1 1 1
132 1325 133 1335 134 1345 135 1.356 1.36

€

FIG. 8. The specific heat.
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value for SAWSs in 3.

semble just has no such configurations, with overwhelmin
probability. Thus the parts of the chains grown at ambien
densitiesp>p, are correct, but the older parts are wrong an
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FIG. 11. Thermal correlation length;=Ilimy_.Renq plotted
againste— €* on a In-In plot. For large values @&f— €*, statistical
errors are much smaller than the symbols. kere* <0.01 we
cannot give exact errors, but rough estimates can be obtained by
comparing with Fig. 10. The dashed line has slep@.59, corre-
sponding tovy=v.

is no longer so when we base the population control on a
higher value ofe. Then chains with largen are favored
already from the very beginning. As long asip4, they will

not contribute significantly because they have a tiny weight.
But at p>p,, their typical weight will become larger than
that of the completely molten chains, and they will start to
contribute. We found thain) indeed increased very rapidly

22111 a very narrow density interval of a few percent, when

sing this improved algorithm. This still did not allow us to

gmeasure reliably the differengg,—p;, but it convinced us

have virtually no chance to be corrected by regrowing. Thi©f the correctness of the scenafia particular of the first
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FIG. 10. Average squared end-to-end distaR@g, for various
values ofq=e*, plotted againstN on a double logarithmic scale.

oy Tyl
WP 0L 0w

noo
aaaooco o4 g

100
N

1000

0.1

0.01

0.001

const x R® P(R)

0.0001

0.00001 ]

100

1000

Since all curves are based on independent runs, their typical fluc-
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their statistical errors.

three values ofj=e€. Normalization is arbitrary.
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TABLE I. Effective crossover exponemi.; from the fits of the 7

~3.825 —— 4
maximum of the specific heat as a function of minimum value of %533%35 -
Ny considered in the fit. 6l os8s ]
g q=3.85
" 5 q=386
Nmin e A dest X DF § 5| g:§§i i
q= X R |
500 0.92@0.019 0.042 3 * q=_‘2-9‘:5 — :
1000 0.925:0.055 0.039 2 Zat g;gig : 1
1500 0.98-0.15 0.0015 1 = 0931 N - 0.
=
Vst .
Ni
order of the transition and it gave uncertainties roughly as =
large as the symbol sizes in Fig. 1. ar e 1
. _ . 1 i L .
4. The short chain&double-stranded phase transition ) T 100 1000
In contrast to the above, the determination of the phase N

boundary between th*e phase having only short chains and the g 14 | ggarithms of partition sums at different valuesqof
dense phase foe>e* was straightforward. Valuesc(e)  _ e after subtracting suitable terms so that they become flat for

were obtained by plotting IAy(e)—(y—1)IINN+NINZ  N_ oo and e>e*. The straight dashed line has slopé — y
against IlN and changing until this became horizontal for —g g3

largeN. Several such curves are drawn in Fig. 14. Notice that

we cannot expect Lhe”jlt(? be flat at small valuesip§ince  critical point. In view of the substantial finite-size corrections
the behavioZy~ n"N”" " is expected only when the length at smallN and the uncertainties at largédue to statistical

of the (double-strandexdchain is much larger than the typical errors and the uncertainty in the exact valuebf we obtain
size of a molten “bubble” and this makes difficult the de- 5 rather crude estimate

termination of the asymptotic regime. But this does not af-
fect the uncertainty of.(€)=1/u in a dramatic way, since y*=2.09+0.1. (6.4
Zy is extremely sensitive to even tiny changespaf As a
result we cannot give formal error estimates, but they aréJnfortunately, we do not have any prediction fgf to com-
definitely smaller thant0.000 05. This number refers ®©  pare this with. But for ideal random walks we hawg, =
~€* where errors are largest, fes>e* our estimates are —1 (see Appendix wheres was defined in Sec. IV and is
indeed much more precise. A blow up of this phase boundaryelated toy* by Eq.(4.6). Trying o= o, as a first guess, we
is shown in Fig. 15. From that we verify that the boundarywould predicty* =2.16 in surprisingly good agreement with
terminates at ¢*,z*) with finite nonzero slope, showing our direct estimate.
again that$=1. For very large values of we see also that Finally, we can read off from Fig. 14 values of the func-
[n(€)]%ec— u(0) as we should expect for a very tightly tion A(e) in the scaling ansatz
bound double-stranded chain.

From the curves witle~ * in Fig. 14 we can read off the Zn(e)=A(e)u(e)NN7L, (6.5
exponenty* controlling the partition sum exactly at the tri-

According to Eq.(4.7), this function should scale a&(e)

0.016 T T T T ~ _ 777* i 1<fi
Phenomendlogical prediction (e—¢€*) . This was reasonably well satisfied.
N=700 +
0.014 N=3000 X 0.215 T T T T T T T T T
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= 0.2 1
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FIG. 13. Comparison of the scaling functiorig(x) for N £

=700, e=1.19 andN= 3000, €= 1.32 with the phenomenological FIG. 15. Phase boundary between the short chain and double-
prediction forf(x) of [31,32. stranded phases.



PRE 62 SIMPLE MODEL FOR THE DNA DENATURATION TRANSITION 3969

VIl. CONCLUSION even parity is still a hypercubic latticeThis would not be

We studied a simplified model for DNA denaturation. It tru:ef, v(\a/égae:((;:)ttgivti&irlg(il)a':r::tevcg ht of the sinale walker
can be considered as a lattice realization of the Poland- " . NA Ight o >INg
Sheraga moddl,5], however taking into account correctly configuration, the recursion relatid@Al) is equivalent to
all excluded volume effects. The melting transition in this d
model is simply related to the balance between the entropice (y) — CE (x+e)+ct - (x— 1+(e=1)8
gain of the two DNA strands when being independent, to be N(x) Z:l [en-a(xF @)+ eys(x—e) ]+ 3ol
compared with the energy gain in configurations where they (A2)
are tightly bound together. . _

The numerical results show that excluded volume effect$ut because of the rescaling of time only an even number of
are relevant in this transition. They change the transitiorSt€Ps corresponds to the original system. _
from being second ordewithout excluded volume effedts Introducing the generating function in the grand canonical
to being first order. In spite of the latter, we find a divergent€nsemble by a Laplace transform
length scale, and scaling relations typical fofta-)critical "
point. We explain this by the absence of a significant surface e _ € N
tension between the molten and bound phases. G (X'Z)—NEO CN()Z", (A3)

The present study systematically takes into account ex-
cluded volume effects in DNA melting. We have neglected gyne can write the Fourier transfor@(q,z) in terms of the

number of other features that might be equally or even morgee propagator of the Gaussian model on the lattice
important. We plan to consider some of these in future work,

which includes, in particular, heterogeneity of the chain due
to the quenched sequence of DNA bases. D(q,z)=

==, A4
m3+ g2 A9
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G%q,2)=
APPENDIX: EXACT RESULTS zef+(1—ef)f [dg]?D(q.2)
FOR INTERACTING IDEAL RANDOM WALKS

. (A5

where the integration is done on the first Brillouin zone. The

In this Appendix we provide an analytic solution for our ) o :
model in the ideal case, i.e., when the excluded volume inknowledge of the singular behaviorznin the smallg region

teraction is fully neglected, ofhyperycubic d-dimensional " Eqg. (A5) makes it possible to determinate the critical prop-

lattices. In this case the generating function can be easil?mes of the system in the monodisperse ensemble by an

computed and the order of the transition can be easily detef?Verse Laplace transform. .

mined in any dimension. Let us defirg,(x) as the un- For instance, the partition SUBEy=2,Can(X), the mean
normalized weight of the configuration of twéd-step ran- value _Of powers of components of the square dls_tance from
dom walks{w®, 2} starting both at the origin and ending at the origin(or in thezgrlgmal s%/rgteezm of thez square distance of
a distance vectax= wﬁ,— wﬁ, apart. A step towards the same the two walkers (xi") =[ 2, C2’§(X)]/ZZN  and thg aver-
lattice position k=0) is favored by an energetic gaine, ~ 29€ number of contact®) = d In(Z3,)/de can be obtained by

corresponding to a Boltzmann weigttt (the energy is here inverse transformation from the following quantities:
expressed ikkT units). We can then write the following re-

cursion relation: &402)=> NZO 2Neg(x), (AB)
d d T
CzN(X):iZ1 1_21 [Con—2(X+E+6)+Con_n(X+6—6) mﬁée(q,z) B o o
(—1) e —; NZOz x2Mes(x), (A7)
+Con_2(X—8+E) T Con_o(Xx—6—§)] Ak q=0 -
X[1+(e—1) 8yl (A1) aéf(o,z)ZZ i ZNacﬁ(x) (A8)
Equation (A1) suggests another interpretation. We can Je x N=0 de

choose the origin of our system to coincide at any time step

with the position of one of the two walkers. In this way the Because of the isotropy of the system, we writg™)
problem is mapped in a single random walker moving at={x?™. If there were no interactione=0), the critical be-
“double speed”(i.e., making two random steps on the lat- havior of the system would arise in the |in‘||ﬂ(2)H0, corre-
tice at each time stépWe use here the obvious fact that a sponding toz* =1/2d. We are interested in changes with
walk on a hypercubic lattice can return to the origin only respect to this critical behavior due to the interaction with the
after an even number of steger that the sublattice with origin.
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It is immediately clear that a critical behavior that is dif- in the scaling laws. EquatiofA10) has a solutionz.(e)
ferent from that of free random walks case can appear in twe<z* for all values ofe>0, andz.(e)—0 whene— +oo.
cases: If the denominator in EGA5) either vanishes or di- This means that in the attractive regime the free propagator
verges atz=z*. The properties of the denominator are alwaysstays finite when the denominator vanishes. In other
deeply connected to the ones of the integral of the freavords, there imo transition between two different regimes

propagatorH(z). when the temperature is changed if the interaction is attrac-
It is easy to see that tive. The system is in the double-stranded phése col-
T lapsed onto the origin in the other vigwDn the other hand,
(mg) ford<2 we can identify a phase transition when the sign of the inter-
H(z)= f [dq]?D(q,z)~3 Inm? ford=2 (A9)  action changes, namely &t =0, and we will show that it is
a second-order one.

finite ford>2 (i) d>2. In dimensiond>2 the presence of a zero-

dimensional region that couples with the random walk intro-
duces an irrelevant operator. The integfiglz) takes a finite
value and its expansion around the singulazityof the free
propagator has the forir34]

so that the case in which the critical behavior is modified
because of divergencies in the denominatorzatz* can
arise only ford=2.

A critical behavior that characterizes a collapseduble-

stranded phase arises when the relation .
H(z)=2> Amd"+C(my)my 2, mi=(1-2/z*)lz,
Hlz(e)] 1 ALD (2) nZO nMo (mg)mg o= )
z(e) 1-e°€ (A10) (A12)

can be satisfied for,<z*, while an unstable fixed point is WgereAn are suitable czonstants ag(mg) is a function of
reached when EqA10) is satisfied forz,=z* and the sin- Mo, Which is finite form;— 0, for d odd and diverges loga-
gularity due to the interaction with the origin merges with fithmically for d even. The leading term i (z) —H(z*) for
the one of the free propagator. dimension d<4 is given by the nonanalytic one
We observe thati(z)/z is an increasing function afand ~ C(mg)m§ 2, itis mgIn(mg) for d=4, and ford>4 itis given
that lim,_.oH(z)/z=12 For this reason, the above equation by the analytic termn%. We will show that this gives rise to
has no solution fore<0, the case of repulsive interaction. a change in the order of the transition wata 4 is crossed.
But in the regione=0 one can find a critical value* for
which Eq.(A10) is satisfied forz.(e*)=z*, with z* defined 1. Molten phase
above. Fore>e* the position ofz;(€) in Eq. (A10) moves
closer to the origin, and lip1,..z.(€) =0. The point €*,z*)
is tricritical in the sense of having codimensiont#o con-
trol parameters have to be adjusted to obtain Eguation
(A10) gives the critical value* on the cubic lattice, which
was used in Sec. VI A

In d>2, for e<e€* the critical behavior in the generating
function is governed by the free propagai®(q,z) whose
behavior arouna@* gives rise to the usual critical exponents
of the random walk, but with amplitudes depending en
One can rewrite near the critical point

R D(q,
1-2 dH(i”. (A11) G(a,2)~ @2 (A13)

* —
e=-In 2d 7* e+ (1—e9)H(z*)

Three kinds of critical behavior in can be identified in any  gnq from the smalf critical behavior of3¢(q,2) and of its

dimensiond, the one for €<e*,z=2*) in which the de-  yerivatives with respect tq and e, one can obtain the fol-
nominator in(A5) does not vaniskmolten phasg the one in lowing scaling forms for large fixed\:

the double-strandedphase governed ble>e*,z=2z.(¢€)],
and the one at the tricritical poinet,z*), but the behavior  partition sum,
in the different regimes depends on the dimensionality.

(i) d=2. From geometrical arguments it is easy to see that 7*
when the dimension of the space is smaller than the Haus- Z5\~ z* N, (A14)
dorff dimension of the walk d,;=1/v=2) the probability e+ (1-e9)H(z")
that the walker intersects a given point is finite. In this case
the interaction with the origin results in a relevant perturbafree energy per base pair,
tion that brings the system out of the universality class of the
unperturbed case, as it appears from the critical behavior for
m§—>0 of H(z). The cased=2 in which the dimension of
the space is equal to the dimension of the walk corresponds
to a marginal interaction and logarithmic corrections appeapase-pair separation moment,

1
f= lim 5InZ5y=In z*2, (A15)
N— o

(X*My=~(2m—1)!1 z*M4"N™; (A16)
3The assertion follows immediately from H(z)/z
=3{_o2Vcg %(0). average number of contacts,
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eTH(z*)—z*]
z* e+ (1-e9H(z*)

()=~ (AL7)

In the limit e—€*~ the mean number of contacts) and
the amplitude ofZ5, diverges

*
Z5y~ ————— (e —€) 1z 2N, (A18
N ¢ (A18)

(ny~(e*—e) L. (A19)

For d=2, instead, the singular behavior bf(z) nearz*

plays a role in the molten phase. Fexe* =0, near the
singular region one has

G4(q,2)~ DL’Z) (A20)
ENCETTeY
and the above scaling laws become
. (1—e)~1zx "ANI2-1  ford=1
ZoNT| (1—e9)"YInN]"1* 2N ford=2, A2D)
f=In(z*?), (A22)
1
(n)~ : (A23)
e -1
(x2My ~N™M (A24)

from which the behavior foe— 0~ can be easily recovered.

2. Double-stranded phase

Let us now study the collapsed phase €*. The denomi-
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(x2™M~(2m—1)!! m!LE)m (A29)
[1-z(e)/z*]™

(n)~ e{H[z:(e)]—z.(€)} N (A30)

z(e)K(e)

It is interesting to study the limie— e**, whose com-
parison withe— €* ~ gives the order of the transition. The
behavior of the denominator neaf and the way in which
z.(€) approacheg™ will be crucial.

We have to distinguish different cases with respect to the
dimensionality of the space. Let us start with-2. From Eq.
(A9) it follows that

ze +(1—e“)H(2)

(1—z/z*)¥2-1 for 2<d<4
~(1—e){ (1-2/z*)In(1-2z/z*) ford=4
(1-2z/z%) ford>4.
(A31)

From this relation it is a simple matter to get the behavior of
Z* —z.(e) andK(e) for ex=€*

(e—€*)?d=2) for2<d<4
7 —z(e)~ (e—e*)[In(e—€*)]"* ford=4
(e—€*) ford>4,
(A32)
(e—e*)d=4M0=2)  for 2<d<4
K(e)~4 In(e—€*) ford=4 (A33)
constant fod>4.

The shift exponent), defined by

nator determines the critical behavior, since it vanishes for

z.(€)<z*, where the smalfj behavior ofD(q,z) is not sin-

z(e)=7"[1—k(e—e*)¥], (A34)

gular. Near the critical region the generating function can be

rewritten as

D(q,2)
K(e)z.(e)[1—2/z,(€)]

Ge(q,2)~ (A25)

where K(e)=(e‘— 1)&H/az|zc(€)—ef is positive. The de-
rivative with respect te of (A5) in the same limit reads

aéf(q,z)% ee{H[Zc(f)]_Zc(f)}
de z(€)’K?(e)[1—2/zo(€)]?

D(q,2).
(A26)

In the same way as the previous relations for the observables

have been recovered, one finds that

7€ Zc(f)izN (A27)
NUK(e[1-ze)Z*]

f=In[z.(¢e)?], (A28)

with k constant, can be read from the above relatigk32)
as a function of. Introducing the crossover exponepit

d-2

b=

for2<d<4
(A35)

1 ford>4,

the above relations can be rewritten in a more compact form,
namely, z*—z.(e)~(e—e*)Y?, K(e)~(e—e*)(*~ /¢

both with the appropriate logarithmic correction éh=4.
One can observe that coincides with the shift exponet.

It follows that for e= €*,

Z(E)_ZN
g~ (A36)
[
g2 (e—€*)1? for d#4
~ +
NEFA (—eine—e)] ! ford=a, A3
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(x®M~(2m—1)!!
| (e—e*) ™ ford#4
Xm'[[m(e—e*)]m(e—e*)—m ford=4,
H(Z*) (6_6*)(1*@'/’
T In(e—e)]

(A38)

ford+#4
ford=4.

*

(n)~e* (A39)
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29 ford=1
[Z*—zc(e)]’\’[eale for d=2 (A43)
e 24 ford=1
K(e)~ e¥ee ford=2 (A44)

with a positive constant. It follows that the above observ-

From (A12) one sees immediately that the free energy has @bles in the limite—0" behave as

discontinuity in its first derivative iti>4, i.e., the transition
is a first-order one.

On the other hand, a different critical behavior is expected

at the critical pointe= €*. In this special point the denomi-
nator vanishes exactly at(e)=z*, the point in which the

free propagator has the smalisingularity. The behavior of
the denominator oéf*(q,z), its derivatives with respect to

g and aeéf(q,z)p for z near toz*, can be read from the
asymptotic expansion ifA31).

Using the same exponeuit defined above, the following
scaling laws hold:

- z* “2NN¢ ford+4
Zon™ 7 "NNY[InN]"!  ford=4, (A40)
(2m—1) mIT(1+ ¢)z*™
2m\ __ mpm
(x2m) YRRy ATN™ (A41)
N¢ ford#4
(M= NoINNT~* for d=4. (A42)

The casal=2 can be handled in a similar way knowing
the behavior ofH(z) near toz*. The way in whichz.(e)
approacheg* andK(e) diverges where—0 is given by

. 7z 2N ford=1
ZoN™) x-2N -1 ford=2, (A45)
I €2 ford=1 s
=IO e ford=2, (A46)
€ ford=1
(m~N e ¥ 2 ford=2. (A47)

Taking the limit e—0" in Eq. (A46) and e—0" in Eq.
(A22) it is a simple matter to see that the transition is a
second-order one.

It is a simple matter to see the behavior at the tricritical

point. G°(q,z) becomes the free-generating function and the
scaling laws that appear are the usual ones. The number of
contacts can be simply recovered from the derivativeA&)
with respect toe settinge=0. This gives the well known
result

NY2  ford=1

{m)~ INnN ford=2. (A48)
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