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Simple model for the DNA denaturation transition

Maria Serena Causo,* Barbara Coluzzi,† and Peter Grassberger‡

John von Neumann-Institut fu¨r Computing (NIC), Forschungszentrum Ju¨lich, D-52425 Ju¨lich, Germany
~Received 13 October 1999!

We study pairs of interacting self-avoiding walks$v1,v2% on the 3d simple cubic lattice. They have a
common originv0

15v0
2, and are allowed to overlap only at the same monomer position along the chain:vi

1

Þvj
2 for iÞ j , while vi

15vi
2 is allowed. The latter overlaps are indeed favored by an energetic gaine. This is

inspired by a model introduced long ago by Poland and Sheraga@J. Chem. Phys.45, 1464 ~1966!# for the
denaturation transition in DNA where, however, self avoidance was not fully taken into account. For both
models, there exists a temperatureTm above which the entropic advantage to open up overcomes the energy
gained by forming tightly bound two-stranded structures. Numerical simulations of our model indicate that the
transition is of first order~the energy density is discontinuous!, but the analog of the surface tension vanishes
and the scaling laws near the transition point are exactly those of a second-order transition with crossover
exponentf51. Numerical and exact analytic results show that the transition is second order in modified
models where the self-avoidance is partially or completely neglected.

PACS number~s!: 87.15.Aa, 64.60.Kw
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I. INTRODUCTION

The study of the nature of the DNA denaturation is a lo
standing open problem. Experimentally a multistep behav
in light absorption as a function of the temperature was
served already in the 1950s~see@1# as a review!. This sug-
gested a sudden sharp opening of clusters of base pai
cooperatively melting regions. This scenario is reminisc
of the behavior at a discontinuous first-order phase transit
in which the system changes its state from a double-stran
two molten single-stranded chains. Since then, this scen
has been verified and studied in great detail@1#.

Early theoretical attempts to model this transition cou
not reproduce these phenomena. The first attempt with a
dimensional Ising-like model in which the two states of sp
correspond to an open or closed state of the base pair, w
favorable coupling between neighbor pairs that are in
same state@2,3#, reproduced a crossover between the t
different regimes but no thermodynamical transition.

The first refinement consisted in taking into account
different entropic weights of opened bubbles and doub
stranded segments@4#, since the phase space region that t
terminally joined~but otherwise free! open strands can ex
plore is bigger than the one accessible to a double stran
the same length.

This model was solved using the entropic weights of s
avoiding loops in Refs.@5,6#. In this way the self-avoidance
between bases within the same loop is taken into acco
but the other mutually excluded volume effects are co
pletely neglected. This simplified model displayed a smo
second-order transition in two and three dimensions.

These models were, of course, only very rough caricatu
of the true complexity of the problem. Even if we believ
that microscopic details should be irrelevant for the existe
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and order of the DNA melting transitions, there are a num
of aspects that one might suspect to be relevant. In addi
to self-avoidance these include the stiffness of DNA, t
difference in stiffness between single- and double-stran
DNA, the different properties ofA-T andC-G pairs, and the
helical structure of double-stranded DNA. Finally, on
should also consider the effect of ‘‘wrong’’ base pairing
either between bases of the two different strands or betw
bases within the same strand.

There seems to exist up to now no model that incorpora
all these aspects. But there have been recent models w
some of them were included, and which seem to reprod
the sudden opening of base pairs. The common propert
all of them is an entropic barrier that favors configurations
which base pairs are far apart.

The ‘‘nonlinear model,’’ introduced in@7,8#, assumes tha
the stacking energy between neighboring base pairs dep
on whether these pairs are in ‘‘helical’’ or ‘‘coil’’ states~i.e.,
whether they are bound in a double string or not!. In a helix,
this stacking energy is larger than in a coil. Transfer-integ
calculations, molecular dynamics simulations@7#, and ap-
proximate analytical methods@8# pointed out a first-order
phase transition.

A recent model goes in the same direction@9#, in which
the helical structure is taken seriously. As a result, a m
chanical torque that tends to increase or decrease the win
becomes a new thermodynamical variable. A transfer ma
calculation@10# shows that this model exhibits a first-ord
phase transition in the temperature-torque plain, analogou
the liquid-gas transition in the temperature-pressure plan

Finally, according to a recent study@11#, the effect of the
heterogeneity in the DNA sequence—which amounts to
frozen disorder in the base pair binding strength—has
effect on the order of the transition if the model contains
entropic barrier, but it gives rise to a multistep energe
landscape if a state dependent stiffness of the type con
ered in@7# is introduced.

The case in which two directed polymers randomly int
act has been exactly solved in Refs.@12,13# in generic di-
3958 ©2000 The American Physical Society
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PRE 62 3959SIMPLE MODEL FOR THE DNA DENATURATION TRANSITION
mensions. The existence of a critical dimension above wh
the disorder is irrelevant and a transition from a weak t
strong-disorder regime takes place has been discussed
the correlation length exponent at the transition point
been determined.

In the present paper we consider a simplified model wh
all these features are disregarded, but—in contrast to the
pers mentioned above—excluded volume interactions
fully incorporated. Our model consists of two interactin
self-avoiding walks, corresponding to the two single stran
with the same origin on a 3d cubic lattice. Each monome
corresponds to a base and is supposed to have its com
ment at the same position in the other chain. Two monom
with different positions in the two chains are not allowed
occupy the same lattice site, whereas the overlap of mo
mers at the same position is favored by an energetic gae
that represents the binding energy. Base-pair misalignm
are forbidden. We consider the homogeneous case, whe
the binding energies are equal.

In our approach we focus mainly on the two conflictin
tendencies of the system: the entropic gain due to the la
number of configurations accessible to the two open stra
of the system on one hand and the tendency to build e
getically favored links between the two strands on the oth
The necessity to balance these opposite tendencies w
minimizing the free energy leads to the finite-T phase tran-
sition between the high temperature swollen phase, and
low temperature phase in which finite fractions of the cha
overlap.

II. MODEL

Let us define twoN-step chains with the same origin o
the 3d lattice v15$v0

1 , . . . ,vN
1 % and v25$v0

2 , . . . ,vN
2 %

with vi
kPZ3 andv0

15v0
25(0,0,0).

The Hamiltonian~or rather Boltzmann weight! that de-
scribes a configuration (v1,v2) of our system is

e2H/KT5)
iÞ j

~12dv
i
1 ,v

j
2!~12dv

i
1 ,v

j
1!

3~12dv
i
2 ,v

j
2!expS 2 ê

kT (
i 50

N

dv
i
1 ,v

i
2D . ~2.1!

Thermodynamic properties of the system only depend on
reduced variablee52 ê/KT that we will use in the follow-
ing. The partition sum can therefore be written as

ZN~e!5 (
n50

N

cN,neen, ~2.2!

where n is the number of contacts,n5card$ i uvi
15vi

2 ,i
.0%, andcN,n is the number of distinct configurations withn
contacts~notice that^n&/N is the natural order parameter!.
Alternatively, by introducing a fugacityz we can go over to
the grand canonical ensemble with partition sum

G~z,e!5 (
N50

`

zNZN~e!5 (
N50

`

(
n50

N

zNcN,nene. ~2.3!
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While we fix the starting point of the two polymers at a sam
origin, v0

15v0
2, we allow the end points to wander freely i

space. This is different from the Poland-Sheraga model@4#,
where also the end points were forced to coincide,vN

1

5vN
2 . At least in the ideal case, the presence of this c

straint does not affect the order of the transition and t
should be true also when the excluded volume interactio
taken into account. However the crossover scaling functi
between different regimes are not the same in the two mo
and at the tricritical point, at which the transition takes pla
different entropic exponents are found. In the excluded v
ume case there is also a topological subtlety: if chains
deformed continuously, nontrivial knots are forbidden if t
end points never separate. In contrast, in our thermodyna
cal treatment any knots are allowed. But this should not h
much influence either.

III. APPROXIMATE TREATMENT

The system can be represented as a sequence ofM super-
imposed self-avoiding walks ~SAWs! of length
n1 , . . . ,nM @nk>0 with n5(k(nk11)21], which corre-
spond to helical domains in DNA where base pairs are bo
together, which alternate withM21 bubbles of lengths
p1 , . . . ,pM21(pk>1; molten regions!. On the lattice, they
are self-avoiding polygons of length 2pi . The last part con-
sists of two self-avoiding walks of lengths

r ~$n,p%!5N2(
i 51

M

ni2 (
j 51

M21

pj . ~3.1!

All the elements of the sequence must be mutually avoidi
that means that two monomers can occupy the same pos
in the space only if they occupy the same position along
chain.

If this last constraint is neglected, one can factorize
problem and write a generating function for the system
terms of the generating functions of single self-avoidi
walks, polygons, and a pair of self-avoiding walks starting
the same origin. This leads to the ‘‘almost unidimensiona
phase transitions of@4,5#.

The partition sum in the fixed-N ensemble can be written
as

ZN5 (
$n,p%

Sr ($n,p%))
i

Wni
Vpi

, ~3.2!

where the sum runs over all possible partitions into heli
and bubbles. Wn5een/kTcn , Vp5C2p , and Sr ($n,p%)
5c2r ($n,p%) . Herecn is the number of self-avoiding walks o
lengthn, while C2p is the number of self-avoiding polygon
of length 2p. This partition sum is clearly an upper bound
the true one, since many configurations are included, wh
are not allowed due to self-avoidance.

The simplified problem can be easily solved in the gra
canonical ensemble, i.e., by considering the generating fu
tion G(z)5(N50

` zNZN . We find

G~z!5
GW

e ~z!GS~z!

12eeGW
e ~z!GV~z!

, ~3.3!
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3960 PRE 62CAUSO, COLUZZI, AND GRASSBERGER
where GW
e (z)5(N50

` zNWN , GV(z)5(N50
` zNVN , GS(z)

5(N50
` zNSN . The critical behavior of the system is dete

mined by the singularity ofG(z), which is closest to the
origin, and it can be studied by using the asymptotic for
for the number of self-avoiding walks and polygonscN
'mNNg21, C N'mNNa22, wherem is the connectivity con-
stant, which is a lattice dependent quantity. Two cases
possible: the singularity closest to the origin comes fr
GS(z) or from vanishing of the denominator. Let us focus
the cased53. Recent estimates of the critical exponents
a522dn50.23723(4) ~where we used the estimaten
50.58758(7) given in@14#! andg51.157560.0006@15#.

Let us denote withzW , zV and zS the location of the
singularities of the generating functions on the real ax
Since

GW
e ~z!5 (

N50

`
~zeem!N

N12g
, GV~z!5 (

N50

`
~zm2!N

~2N!22a
,

~3.4!

GS~z!5 (
N50

`
~zm2!N

~2N!12g
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it appears immediately thatzW5e2e/m, zS51/m2, while
GV(z) is finite at zV5zS51/m2 ~since one has 22a.1),
but it diverges forz.zV .

In the high temperature regime, i.e.,e→0, the singularity
of GS is the first to occur and the critical behavior is that
two self-avoiding walks. This means that the system is in
denaturated state, and the corresponding free-energy de
is given by f /KT5 ln zS522 lnm. This is just the entropy
density of two self-avoiding walks with the same origin.

SinceGW
e (z) is an increasing function ofe, for decreasing

temperatures~increasinge) the zerozWV of the denominator
in Eq. ~3.3! decreases and finally becomes lower thanzS .
The crossing point corresponds to the melting transitione* .

It can also be shown that the order of the transition
determined by the singular behavior ofGV(z) in 1/m2, it
depends on the value of the exponent 22a @5#. SinceGW

e (z)
is regular in 1/m2 at e5e* , it plays an irrelevant role at the
transition point and this is independent from the value ofg,
i.e., the fact that the helical domains are self-avoiding
ideal does not affect the order of the transition. The fr
energy fore>e* is given by
f /KT5H 22 lnm1C~e2e* !1/(12a)1 . . . for 1,22a,2

22 lnm1C~e2e* !1 . . . for 22a.2.
~3.5!
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Since 22a51.76276(6)@14#, the approximate solution pre
dicts a second-order phase transition.

The main approximation involved in the above treatm
is that it neglects excluded volume effects that come fr
the mutual interactions of different bubbles, segments,
free ends. As already pointed out, this means that we o
estimate the partition function, and the transition could
sharper than predicted by this simple model.

On the other hand, one can immediately use the ab
arguments to infer that the transition is certainly of seco
order in the case of interacting random walks, since 22a
53/2 there, and there are no excluded volume effects to
taken into account. We present in the Appendix an ex
analytical treatment of the ideal case. There we also eval
numerically the melting valuee* , and we study the scaling
laws whose general structure will be discussed in the n
section.

IV. SCALING LAWS

Again it is more easy to discuss the problem in the gra
canonical ensemble, with the fugacityz conjugate toN. The
limit N→` in the monodisperse ensemble corresponds
z↗zc(e).

Valuesz.zc(e) only make sense after placing the syste
in a ~large but! finite volumeV. The two polymers are al
lowed to grow until they fill the volume with a finite nonzer
densityr52^N&/V, which remains constant in the limitV
t

d
r-
e

ve
d

e
ct
te

xt

d

to

→`. In this regime, we actually have two different phase
corresponding, respectively, to molten and undenatu
~double-stranded! chains. It is intuitively clear that a nonzer
density favors the presence of contacts, because contac
our model reduce the volume occupied by the monom
pairs. Therefore one expects that the transition point betw
the molten and double-stranded phases takes place at a l
value of the interaction parametereL

dense(z) when the fugacity
z increases. This phase diagram is shown in Fig. 1.

Notice that the boundary between the molten dense ph
and the short chain phase is strictly horizontal, as the att
tive interaction plays no role along this transition line. Qua
tatively, this phase diagram is very similar to that for a po
mer attached to an adsorbing surface@16,17# and to surface
transitions in magnetic systems@18#. But in contrast to the
latter, the boundary between the two dense phases is
horizontal.

Using the (z,e) representation, it is clear that the meltin
transition is a tricritical point. Its analog in magnetic system
with surfaces is the special point@18#. The curvez5zc(e)
consists of two parts, a horizontal one fore,e* and a tilted
one for e.e* . At the melting point (z* ,e* ), one sees a
change of critical behavior. At finite largeN, for e,e* the
critical behavior of a SAW of length 2N is observed, while
for e.e* the system displays a double-stranded behav
At fixed N, for e neare* , a crossover between the tricritica
behavior and the double-stranded one (e.e* ) or between
the tricritical behavior and the 2N-SAWs one (e,e* ) is
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PRE 62 3961SIMPLE MODEL FOR THE DNA DENATURATION TRANSITION
observed ase tends toe* . The width of the crossover regio
decreases asN increases.

In the following we shall discuss the scaling laws th
would be expected if the melting transition is second ord
If it is first order, it seems at first not clear whether the us
scaling scenario~which is based on the existence of a dive
gent length scale! still holds. We shall see in Sec. VI that
does hold even then. An analytic study in the ideal case~no
excluded volume! is shown in the Appendix.

Near a tricritical point, the partition sum is expected
scale as

G~z,e!5~z* 2z!2g* F@~e2e* !/~z* 2z!f#, ~4.1!

with f being called the crossover exponent. The scal
function F(x) is nonsingular atx50, from which follows

ZN~e* !;~1/z* !NNg* 21 ~4.2!

for the scaling exactly at the melting point.1

1The value ofg* in the ideal case is computed in the Append
We find g* 511f @see Eq.~A40!#. On the other hand, if both the
extremities are bound together as in the Poland-Sheraga mode
easy to see that the crossover exponentf does not change, but th
absence ofGS(z) in the numerator of Eq.~3.3! gives a different
singular behavior ate* . It is simple to see, following the same line
as in the Appendix, that this givesg* 5f.

FIG. 1. Phase diagram. On the horizontal axis is plotted
Boltzmann factorq5ee per bound monomer pair, while the fuga
ity is plotted vertically. Below the continuous line, chains are sh
with an essentially exponential distribution in chain length. At th
line, the average chain length diverges. To the left of the triple~and
tricritical! point, the line is horizontal~i.e., the critical fugacity is
independent ofq and coincides with the value for normal SAWs!.
The ‘‘molten chains’’ and ‘‘double-stranded chains’’ phases a
well defined only for finite volumeV, with the chain lengthN}V.
The numerical determination of the phase boundaries is discu
in Sec. VI. While the continuous line is very precise~error less than
the width of the line!, the uncertainty of the molten/double-strand
phase boundary is at least as big as the symbol size.
t
r.
l

g

For e.e* andz→zc(e) from below,G(z,e) must scale
as the partition sum for a~double-stranded! SAW, G
;const/@zc(e)2z#g. ThereforeF(x) must have a singularity
at some finite valuex0 where it diverges as

F~x!;
const

~x02x!g
, ~4.3!

and for smalle2e*

z* 2zc~e!;x0
21/f~e2e* !1/f. ~4.4!

Thus the crossover exponentf describes how the critica
fugacity depends on the contact energy in the bound~non-
molten! phase.

Finally, for e,e* and z↗z* we must have G
;const/(z* 2z)g. This is the case if

F~x!;~2x!s, x→2` ~4.5!

with some powers, and

g* 1fs5g. ~4.6!

Performing the Laplace transform one checks easily that
~4.1! is obtained with the ansatz

ZN~e!5m~e!NNg* 21C@~e2e* !Nf# ~4.7!

with m(e)51/zc(e). In order to get the right asymptotics fo
eÞe* , the scaling functionC(x)—which is related toF(x)
by a Laplace transform—must scale asuxu(g2g* )/f for x→
6`.

The scaling of the energy is obtained by differentiatingZN
with respect toe. It is @16#

EN~e!;H ~e2e* !1/f21N for e.e*

Nf for e5e*

1/~e* 2e! for e,e* .

~4.8!

From this we see that a first-order transition is obtained
f51. The scaling of the specific heat is obtained by deriv
once more with respect toe. One finds that the peak of th
specific heat scales asN2f21 and is located ate*
1const/Nf.

One can also look at the system from an extended sca
point of view @19–21#. We define two correlation lengthsj1
and j2. The second, which we call thegeometricalcorrela-
tion length, is identified with the Flory radius of any of th
two polymersj25^(vN

1 2v0
1)2&1/25^(vN

2 2v0
2)2&1/2. It fol-

lows the scaling lawj2;Nn in any phase. The first,j1, is the
thermalcorrelation length. It is defined as the mean diame
of the molten ‘‘bubbles.’’ In the bound phase we expect it
scale withN and (e2e* ) in the same way as the end-to-en
distance between the two strands,j1}Rend5^(vN

2

2vN
1 )2&1/2 . If the denaturation transition is second order, t

thermal correlation lengthj1 inside the bound phase con
verges in the limitN→` to a constant that depends one, but
the value of the constant diverges ase↘e* . Exactly ate
5e* it should scale as a function ofN in the same way asj2,
i.e., both correlation lengths should be equivalent.

t is
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3962 PRE 62CAUSO, COLUZZI, AND GRASSBERGER
In contrast, in a usual first-order transition we would e
pect that the thermal correlation length remains finite aN
tends to infinity also in the limite↘e* , but we will see that
in our system this picture does not hold because of vanish
of a surface tension. In approaching the transition point fr
the molten phaseRend scales as the Flory radius and is th
not related toj1.

Denoting with a subscriptT the exponents that govern th
scaling laws in the thermal parametere2e* , we can define a
thermal correlation length exponentnT by assumingj1
;(e* 2e)2nT in the limit where we take firstN→` and
thene→e* 20. One has@20,21#

f5n/nT . ~4.9!

This can be understood in two ways. First, one can inv
the fact thatj2;j1 when e5e* . Then Eq.~4.9! expresses
just the fact that]j2/]e and]j2/]z are related by Eq.~4.4!.

Alternatively, one observes thatD51/n is just the~Haus-
dorff! dimension of the system, whence the specific heat
ponent aT5221/f takes the familiar hyperscaling form
aT522DnT @21#.

Let us finally discuss histogram methods that have
come increasingly popular during the last years. They p
vide expectation values at temperatures different from th
used in the simulations. In addition, they are used to st
finite lattice size effects. Near an ordinary temperatu
driven critical point, the energy distribution scales in a fin
spin system of lengthL as @22,23#

PL~E!;L21/np@~E2^Ec&!/L1/n#. ~4.10!

This is different for a first-order transition where the dist
bution has two peaks that get increasingly separated w
the system size is increased. The minimum between the
peaks becomes exponentially deep~with the depth controlled
by the surface tension between the two phases!, and the
peaks become arbitrarily sharp in the limitL→`.

Instead of studying the distribution for fixedlattice size,
in the present case it is natural to study it for fixed finiteN. In
view of E;Nf, one might now expect a similar behavior

PN~E!;N2fp~E/Nf!. ~4.11!

In Sec. VI we show that this is indeed true for the melti
transition of ordinary random walks in dimensions 2,d
,4. There the transition is second order withf5d/221,
and Eq.~4.11! is correct. But surprisingly Eq.~4.11! is also
correct for ordinary random walks in dimensionsd.4,
where f51 and the transition is first order. This can b
understood as a vanishing of the analog of the surface
sion: the cost involved in going over from a molten doma
to a bound domain does not increase withN. This is obvi-
ously due to the fact that our system is~at least topologi-
cally! one dimensional. Indeed we will show in Sec. VI th
the same is also true for SAW melting ind53.

We should add that histograms are particularly easy
obtain with our method of simulation~see Sec. V!, since it
gives us absolute estimates of partition sums. Thus com
ing results obtained at different nominal energies is straig
forward and does not pose the problems found in Metropo
type simulations@24#. For Fig. 5, e.g., which involved ou
-
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highest statistics, we used three main runs at different t
peratures, plus a number of runs with smaller statistics
sample the high-n tail.

V. SIMULATIONS

We use the pruned-enriched Rosenbluth method~PERM!
@25#, with Markovian anticipation@27#, which is particularly
effective to simulate interacting polymers@28#. In the present
case the algorithm was implemented in such a way that
two chains grow simultaneously~i.e., adding one monome
to the first chain, then to the other, again to the first, and
on2!. Following the PERM strategy, the whole system gro
according to the Rosenbluth method@26# while configura-
tions with very large/very small weight are cloned/prune
The bias used during the Rosenbluth sampling is correc
by multiplying the weights of the configurations with th
appropriate factor.

The k-steps Markovian anticipation consists in an ad
tional bias based on the statistics of sequences ofk11 suc-
cessive steps@27#. In dimension d, labeling by s
50, . . . ,2d21, the 2d directions on a hypercubic lattice an
by S5(s2k , . . .s0)5(s,s0), a given sequence ofk steps
ending ins0, one considers the statistical weightPN,m(S) of
all N-step chains, which followed the sequenceS during the
stepsN2m2k, . . . ,N2m. The bias in ak-step Markovian
anticipation is then given by

p~s0us!5PN,m~s,s0!/ (
s0850

2d21

PN,m~s,s08!. ~5.1!

This means that a step in the directions0 is chosen more
often if the previous experience tells us that it will be mo
successful in the far (m steps ahead! future. These biases ar
obviously compensated by a factor}1/p(sous), to get a cor-
rect sampling. In our simulation the weightsPN,m(S) were
estimated in a preliminary run. Moreover we used anad hoc
bias for the present model. When the second chain ha
perform a growth step and the end of the first one is in
neighboring site, we bias this step towards the end of the
chain with probability}ee.

One can further increase the probability of sampling co
figurations with many contacts by favoring growth steps t
reduce the end-to-end distancer 5uvi

22vi
1u. We found that

such a bias~which has to go to zero forr→`) can substan-
tially enhance the sampling efficiency, but leads occasion
to ‘‘glitches’’ where a disfavored configuration is encou
tered nevertheless, with exceptionally large weight. W
therefore use only the previously described bias.

As one could expect for a first-order transition, fluctu
tions neare* arevery strong, particularly on the probability
distribution of the energy. A large part of our statistics w

2This can straightforwardly be extended to more than two cha
and allows then very efficient simulations of star polymers, in p
ticular near to collapse transitions where other methods bec
inefficient.
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FIG. 2. Scaling plots of the average contact number for random walks in 3d and of the corresponding probability distribution ate
5e* . Heree* 51.077 26 andf51/2 are the exact values~see Appendix!.
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collected in order to obtain clear data forP(E) up to large
chain lengths (N53000, i.e., a total of 6000 monomers!, and
for a very wide range ofE. This aim was achieved by per
forming independent runs at five different values of the
teraction strength,e51.356, 1.345, 1.343, 1.338, 1.330 an
by reweighting results. AtN53000 about 105 independent
configurations were obtained for each interaction stren
The errors were evaluated with the jackknife method, i.e.,
using the fluctuations between independent runs. Since
have only few such runs to compare with, the errors sho
be considered just as rough estimates.

Moreover we made runs up to very large chain leng
(N58000) in order to study the large-N behavior of the
partition function and of the end-to-end distance. We a
performed simulations at finite density~which will be dis-
cussed more in detail in the following! in order to locate the
molten/double-stranded phase boundary. In all these c
the statistics was very high~typically at least 107 attempts or
‘‘tours’’ in the notation of @25#!, but the efficiency of the
method deteriorates quickly if one reaches very long cha
very low temperatures, and high densities. In contrast
usual ~Metropolis-type! simulations, the problems are no
due to long autocorrelations~successive tours are complete
uncorrelated!. Rather, in these difficult situations most tou
die before reaching long chain lengths, and those which
survive have very uneven weights. Thus it might happen
even for very large samples nearly all the statistical weigh
carried by one or two tours in the wings of the distribution
tour weights. Fortunately, this can be checked@29#, and we
are confident that this problem did not seriously affect m
of our data. As for usual growth algorithms with enrichme
the CPU time that the algorithm needs in order to generat
independent sample of lengthN grows likeN2, with an am-
plitude depending on the bias used@28#.

As a last remark, we note that also in the ideal case in
dimensions, where it is much more simple to get good s
tistics, the use of a bias is necessary for correctly samp
the energy distribution in a reasonable CPU time.

VI. RESULTS AND DISCUSSION

A. The ideal case

Before discussing self-avoiding walks, we study first t
case of ideal random walks, but, of course, weighting c
-
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figurations withn contacts by a factor exp(en). The study of
the ideal system, which is analytically solved in the Appe
dix, allows us both to test the efficiency of the numeric
methods and to verify the peculiar first-order transition p
dicted in five dimensions. We limit the analysis to simp
hypercubic lattices withd53 and 5.

1. dÄ3

In 3d one finds a smooth second-order transition wh
moving along the solid line in Fig. 1, characterized by
valuef51/2 of the crossover exponent. In Fig. 2~a! we plot
^n&/Nf as a function of (e2e* )Nf. The behavior agrees
with the expected scaling law, i.e., the data are compat
with the exact values ofe* and off. Furthermore, finite-size
corrections appear to be small. The probability distributi
P(n) exactly at the critical point, properly rescaled byNf

and plotted againstn/Nf, is shown in Fig. 2~b!. The perfect
data collapse confirms both the validity of the scaling la
Eq. ~4.11! and the efficiency of the numerical method.

2. dÄ5

Let us now turn on the more intriguing 5d case. It is
shown in the Appendix that the system undergoes a fi
order transition, since the contacts density^n&/N is discon-
tinuous ate* in the thermodynamic limit, but shows scalin
with a valuef51 of the crossover exponent. We present
Fig. 3 data forP(n) at the analytically calculated critica
valuee* . This plot is completely analogous to Fig. 2~b!, but
uses the exact valuef51 ~see Appendix!. We see now defi-
nitely larger corrections to scaling. Also, the curves a
slightly cap convex, which shows that^n&/N is not strictly
discontinuous ate5e* . But this is obviously a finite-size
effect. ForN51000, the maximum ofP(n,e) jumps from
n/N50 to n/N5c* '0.4 whene is increased frome* to
1.0005e. In the limit N→`, on the basis of our numerica
results we can conjecture thatP(n,e* ) is flat betweenn/N
50 andn/N5c* .

On the other hand, it is obvious thatP(n) does not have
the double-peak structure familiar from usual first-order tra
sitions. In these usual cases, the valley between the pea
due to surface tension: States with the order parameter
tween the two peak values contain more than one dom
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and are therefore suppressed by surface tension. In
present case, there is no penalty for a transition betwee
molten and a double-stranded domain, explaining why
configurations with 0<n/N<c* can be equally populate
~for magnetic polymers, a similar scenario was proposed
cently in @30#!. Notice that scaling as formulated in the pr
vious section would not hold for usual first order transition
since the valley between the peaks becomes exponen
deep in the thermodynamic limit,P;exp(2sLd21) for sys-
tems of linear sizeL. Formally, this can be reconciled wit
the present case by noticing that our polymers have topol
cal dimension equal to one.

Related to this are strong fluctuations in the separation
the two chains in the double-stranded phase. Indeed
proven in the Appendix, the average end to end dista
diverges asj1;(e2e* )21/2 as the critical point is ap-
proached frome.e* . This shows that the ‘‘thermal’’ corre
lation length exponent isnT51/251/D and aT522DnT
522f2151.

In Fig. 4 we plot the contact number density~left panel!
and the specific heat~right panel!,

C5N21
]E

]T
5N21e2

]^n&
]e

5N21e2@^n2&2^n&2#,

~6.1!

FIG. 3. Probability distribution of contact numbers for rando
walks in 5d at the exact critical valuee* 52.001 15.
he
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,
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of
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againste. In Fig.4~a!, curves for different chain lengths cros
nearly at the samee value, which is also the value the sp
cific heat maximum is moving towards. Within the expect
uncertainty, it agrees with the predictede* . But when trying
to make the data collapse by plotting them againste
2e* )Nf, we see again strong corrections to scaling. Inde
such fits usinĝ n&/Nf would give f.0.93 instead off
51. Another estimate for the crossover exponent can be
covered from the way in which the maximum of the speci
heat moves towarde* as the length of the walk increase
Since in the crossover region the specific heat follows
crossover scaling, the position of the maximum forN finite is
shifted by a term proportional toN2f, f.1 by a small
amount. These deviations from perfect scaling give us a
of what we have to expect when now going over to se
avoiding walks.

B. Self-avoiding walks,dÄ3

1. Scaling of P(n) and properties derived from it

In Fig. 5 we show lnP(n,e* ), where e* 51.3413
60.0004 is our best estimate of the criticale value. This
distribution is clearly not convex, in contrast to the case
five-dimensional ideal random walks studied in the previo
subsection. Instead, there is a peak atn50. Due to this peak,
the maximum of P(n,e) jumps discontinuously whene
passes throughe* ~see Fig. 6!. Apart from this, the situation
is very similar. We see again substantial corrections to s
ing, but it seems quite clear that scaling works withf51. In
particular, the depth of the valley between the peak atn50
and the shoulder atn/N5c* '0.5 does not increase withN.
And, what is more important, the value ofc* does not sub-
stantially decrease withN. This is our strongest numerica
evidence for the transition to be of first order. It should
noted that here we are considering quite long chains~up to
N53000) and that the data forN52500 and forN53000
are nearly indistinguishable.

Deviations from the scaling behavior are seen mostly
large n/N. There, the distribution becomes increasing
steeper withN. This was seen also for ideal random walks
d55. It is indeed easy to understand. At largen, we expect
P(n);een(N/n)n(12n/N)n2N, which does not follow our
scaling law but is in qualitative agreement with our data.
FIG. 4. Average contact number and specific heat per site for random walks in 5d.
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Accordingly, also the scaling of̂n&/N becomes poor for
large e, as seen from Fig. 7~b!. If we try to optimize this
scaling plot, we would findf'0.94. But we know that this
would be wrong since this would put too much emphasis
the regionn/N'1 in the contact number distribution, whic
we know to be not scaling.

We face a similar situation when looking at the spec
heat. As seen in Fig. 8, the height of the maximum@see Fig.
9~a!# increases roughly}N, which would correspond tof
51, but a least squares fit of our data shows an effec
exponentf,1. Since we are working withN<3000, in a
regime which is far from the critical one, we expect that o
estimate is biased by the presence of corrections to sca
Anyway no clear trend in the computed exponent is obtai
from fits of data with cuts corresponding to increasing valu
of N ~see Table I!. All the obtained values are compatible
the statistical errors, but ax2 analysis indicates that our e
rors could be overestimated. Nevertheless the central v
of the effective exponent increases with the increasing
Nmin . This could indicate the presence of corrections to sc
ing. The last value obtained forN51500 is compatible with
f51.

On the other hand, fitting the shift of the position of th
maximum, which is shown in Fig. 9~b!, one would getf
51.31(14). In this case the large statistical errors on our d

FIG. 5. Probability distribution of the contact numbers f
SAWs in 3d at the estimated critical valuee* 51.3413(4).
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do not allow any guess on the correction to scaling effec
In summary, these results show that the melting transit

for interacting SAWs in three dimensions is first order, wh
the analogous transition for interacting ideal walks in thr
dimensions is second order. This agrees with our expecta
that excluded volume effects should make the transit
sharper. We should add that we also performed simulati
of a third version of the model, in which the two polyme
were self- but not mutually avoiding~data not shown!. While
two monomers of the same chain were not allowed to occ
the same site, two monomers from different chains were
lowed to do so, and this contributed to the energy if and o
if the indices of the monomers were the same. For this in
mediate model we found aP(n) very similar to Fig. 5, but
with a less pronounced peak atn50 and a very small non-
convex region. Therefore we are not sure whether the tr
sition in this model is first or second order.

2. The thermal correlation length

Up to now we only looked at the scaling behavior ofP(n)
and at quantities that are related to it straightforwardly. W
mentioned already in Sec. IV several scaling, laws that
less directly related.

The most interesting ones concern thethermalcorrelation
length ~see Sec. IV!. In the double-stranded phase (e.e* )
we can identify it with the rms distanceRendbetween the end
points of the two chains. Numerical results for the lat
~both for e.e* and for e,e* ) are shown in Fig. 10. For
e.e* , Rendtends forN→` to a constant that diverges whe
the tricritical point is approached, showing that there is
deed a divergent thermal correlation length, which is ind
pendent of the system size for large systems. Exactly at
tricritical point we find Rend;Nn, showing that there the
thermal and the ‘‘geometrical’’ correlation length~the Flory
radius! coincide. The latter is also known from polymer a
sorption to a wall, see, e.g.,@16,17#. The divergence ofj1

5 limN→`Rend
2 for e→e* 10 is shown in Fig. 11. We see

that thethermalcorrelation length exponentnT , defined by
j1;(e2e* )2nT, agrees with the Flory exponentn ~thegeo-
metrical correlation length exponent!. Since f5n/nT
@20,21#, we find againf51.

For e,e* we also haveRend;Nn. But in this regime,
Renddoes not scale as the thermal correlation length. Inste
FIG. 6. Probability distribution of the contact numbers for SAWs in 3d at e50.999e* ande51.001e* .
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FIG. 7. The average contact number per monomer plotted againste ~left panel! and against (e2e* )N ~right panel!.
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we can identifyj1 with the average diameter of small molte
‘‘bubbles’’ ~which we did not measure since our algorith
would give very large errors!. Since SAWs in three dimen
sions are not recurrent, large bubbles do not occur in
molten phase, andj1 is finite and decreases with decreasi
e.

Finally, end-to-end distance distributions are shown
Fig. 12. Fore,e* they coincide for largeN with the end-
to-end distance distributions of noninteracting SAWs
length 2N, except for a region of very small distances, whi
becomes irrelevant in the limitN→`. More precisely, if we
denote withcN(RW ) the number ofN-step walks whose end
points are at a distanceR5uRW u apart, we have

f N~x![~2d!2d/2Rend
d PN~RW !

5~2d!2d/2Rend
d cN~RW !

(
RW

cN~RW !

' f ~x!@11O~N2D!#, ~6.2!

wherex5(2d)1/2R/Rend, f (x) is a universal function, andD
is a correction to scaling exponent. As shown in@33#, f (x) is
well approximated by a phenomenological representa
given first by McKenzie and Moore@31,32#. A comparison
with the latter is shown in Fig. 13. For smallx the attraction
between monomers is felt andf N(x) is larger than for ordi-
nary SAWs, but this effect disappears forN→`, as long as
e is strictly smaller thane* . The transition between the re
gimese.e* ande,e* is not through a double-peaked di
tribution as one might expect for a first-order transition, b
there is an approximately flat plateau ate'e* .

3. The moltenÕdouble-stranded phase transition

The boundary between the two dense phases in Fi
~crosses! was obtained by taking finite lattices of sizeL3

with periodic boundary conditions. During the simulation w
measured only the energy~numbern of contacts! and the
partition sum. The phase transition is seen as a rapid incr
of ^n& when the monomer densityr5N/L3 increases above
a valuer1(e). Let us definez1(e) such that
e

n

f

n

t

1

se

]

]N
@z1~e!NZN~e!#N5r1(e)L350. ~6.3!

If the transition were second order,z1(e) would be the criti-
cal fugacity at the considered value ofe. But our simulations
show clearly that the transition is first order. In this ca
there is a second value of the densityr2(e).r1(e) such that
the system is in the double-stranded phase whenr.r2, in
the molten phase whenr,r2, and in a mixed phase in be
tween. Equation~6.3! holds in the entire intervalr1,r
,r2.

For most values ofe we used L532, only for e
.1.3 (q>3.7) we used larger lattices of size up to 643.
Using the algorithm as described in Sec. IV we were able
see the first thresholdr1, but not the second one. Obviousl
our algorithm is not efficient enough. Also, the increase
^n& was too slow forr.r1. On the other hand, lattices o
different sizes gave roughly consistent values ofr1. The al-
gorithm became much more efficient when we based
‘‘population control’’ ~copying and pruning! on weight fac-
tors calculated with a larger value ofe than that used for
evaluating average values~we used mostlye5e* , but
slightly larger values also worked well!. This is easily under-
stood. When the density is high enough that double-stran
configurations would be favored over molten ones, our

FIG. 8. The specific heat.
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semble just has no such configurations, with overwhelm
probability. Thus the parts of the chains grown at ambi
densitiesr.r1 are correct, but the older parts are wrong a
have virtually no chance to be corrected by regrowing. T

FIG. 9. The specific heat maximum and the correspondine
value for SAWs in 3d.

FIG. 10. Average squared end-to-end distanceRend
2 for various

values ofq5ee, plotted againstN on a double logarithmic scale
Since all curves are based on independent runs, their typical
tuations relative to each other indicate the order of magnitude
their statistical errors.
g
t

d
s

is no longer so when we base the population control o
higher value ofe. Then chains with largern are favored
already from the very beginning. As long asr,r1, they will
not contribute significantly because they have a tiny weig
But at r.r1, their typical weight will become larger tha
that of the completely molten chains, and they will start
contribute. We found that̂n& indeed increased very rapidl
in a very narrow density interval of a few percent, wh
using this improved algorithm. This still did not allow us t
measure reliably the differencer22r1, but it convinced us
of the correctness of the scenario~in particular of the first

c-
of

FIG. 11. Thermal correlation lengthj15 limN→`Rend plotted
againste2e* on a ln-ln plot. For large values ofe2e* , statistical
errors are much smaller than the symbols. Fore2e* ,0.01 we
cannot give exact errors, but rough estimates can be obtaine
comparing with Fig. 10. The dashed line has slope20.59, corre-
sponding tonT5n.

FIG. 12. Distributions of end-to-end distances atN53000 for
three values ofq5ee. Normalization is arbitrary.
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order of the transition!, and it gave uncertainties roughly a
large as the symbol sizes in Fig. 1.

4. The short chainsÕdouble-stranded phase transition

In contrast to the above, the determination of the ph
boundary between the phase having only short chains and
dense phase fore.e* was straightforward. Valueszc(e)
were obtained by plotting lnZN(e)2(g21)lnN1N ln z
against lnN and changingz until this became horizontal fo
largeN. Several such curves are drawn in Fig. 14. Notice t
we cannot expect them to be flat at small values ofN, since
the behaviorZN;mNNg21 is expected only when the lengt
of the~double-stranded! chain is much larger than the typica
size of a molten ‘‘bubble’’ and this makes difficult the d
termination of the asymptotic regime. But this does not
fect the uncertainty ofzc(e)51/m in a dramatic way, since
ZN is extremely sensitive to even tiny changes ofm. As a
result we cannot give formal error estimates, but they
definitely smaller than60.000 05. This number refers toe
'e* where errors are largest, fore@e* our estimates are
indeed much more precise. A blow up of this phase bound
is shown in Fig. 15. From that we verify that the bounda
terminates at (e* ,z* ) with finite nonzero slope, showing
again thatf51. For very large values ofe we see also tha
@m(e)#2ee→m(0) as we should expect for a very tight
bound double-stranded chain.

From the curves withe'e* in Fig. 14 we can read off the
exponentg* controlling the partition sum exactly at the tr

TABLE I. Effective crossover exponentfeff from the fits of the
maximum of the specific heat as a function of minimum value
Nmin considered in the fit.

Nmin feff6Dfeff x2 DF

500 0.92060.019 0.042 3
1000 0.92560.055 0.039 2
1500 0.9860.15 0.0015 1

FIG. 13. Comparison of the scaling functionsf N(x) for N
5700, e51.19 andN53000, e51.32 with the phenomenologica
prediction for f (x) of @31,32#.
e
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critical point. In view of the substantial finite-size correctio
at smallN and the uncertainties at largeN due to statistical
errors and the uncertainty in the exact value ofe* , we obtain
a rather crude estimate

g* 52.0960.1. ~6.4!

Unfortunately, we do not have any prediction forg* to com-
pare this with. But for ideal random walks we haves rw5
21 ~see Appendix!, wheres was defined in Sec. IV and is
related tog* by Eq.~4.6!. Trying s5s rw as a first guess, we
would predictg* 52.16 in surprisingly good agreement wit
our direct estimate.

Finally, we can read off from Fig. 14 values of the fun
tion A(e) in the scaling ansatz

ZN~e!.A~e!m~e!NNg21. ~6.5!

According to Eq.~4.7!, this function should scale asA(e)
;(e2e* )g2g* . This was reasonably well satisfied.

f

FIG. 14. Logarithms of partition sums at different values ofq
5ee, after subtracting suitable terms so that they become flat
N→` and e.e* . The straight dashed line has slopeg* 2g
50.93.

FIG. 15. Phase boundary between the short chain and dou
stranded phases.
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VII. CONCLUSION

We studied a simplified model for DNA denaturation.
can be considered as a lattice realization of the Pola
Sheraga model@4,5#, however taking into account correctl
all excluded volume effects. The melting transition in th
model is simply related to the balance between the entro
gain of the two DNA strands when being independent, to
compared with the energy gain in configurations where t
are tightly bound together.

The numerical results show that excluded volume effe
are relevant in this transition. They change the transit
from being second order~without excluded volume effects!
to being first order. In spite of the latter, we find a diverge
length scale, and scaling relations typical for a~tri-!critical
point. We explain this by the absence of a significant surf
tension between the molten and bound phases.

The present study systematically takes into account
cluded volume effects in DNA melting. We have neglecte
number of other features that might be equally or even m
important. We plan to consider some of these in future wo
which includes, in particular, heterogeneity of the chain d
to the quenched sequence of DNA bases.
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APPENDIX: EXACT RESULTS
FOR INTERACTING IDEAL RANDOM WALKS

In this Appendix we provide an analytic solution for o
model in the ideal case, i.e., when the excluded volume
teraction is fully neglected, on~hyper-!cubic d-dimensional
lattices. In this case the generating function can be ea
computed and the order of the transition can be easily de
mined in any dimension. Let us definec2N

e (x) as the un-
normalized weight of the configuration of twoN-step ran-
dom walks$v1,v2% starting both at the origin and ending
a distance vectorx5vN

2 2vN
1 apart. A step towards the sam

lattice position (x50) is favored by an energetic gain2e,
corresponding to a Boltzmann weightee ~the energy is here
expressed inkT units!. We can then write the following re
cursion relation:

c2N
e ~x!5(

i 51

d

(
j 51

d

@c2N22
e ~x1ei1ej !1c2N22

e ~x1ei2ej !

1c2N22
e ~x2ei1ej !1c2N22

e ~x2ei2ej !#

3@11~ee21!dx,0#. ~A1!

Equation ~A1! suggests another interpretation. We c
choose the origin of our system to coincide at any time s
with the position of one of the two walkers. In this way th
problem is mapped in a single random walker moving
‘‘double speed’’~i.e., making two random steps on the la
tice at each time step!. We use here the obvious fact that
walk on a hypercubic lattice can return to the origin on
after an even number of steps~or that the sublattice with
d-

ic
e
y

ts
n

t

e

x-
a
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,
e
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-

ily
r-

p

t

even parity is still a hypercubic lattice!. This would not be
true, e.g., for the triangular lattice.

If we denote withcN
e (x) the weight of the single walke

configuration, the recursion relation~A1! is equivalent to

cN
e ~x!5(

i 51

d

@cN21
e ~x1ei !1cN21

e ~x2ei !#@11~ee21!dx,0#,

~A2!

but because of the rescaling of time only an even numbe
steps corresponds to the original system.

Introducing the generating function in the grand canoni
ensemble by a Laplace transform

Ge~x,z!5 (
N50

`

cN
e ~x!zN, ~A3!

one can write the Fourier transformĜ(q,z) in terms of the
free propagator of the Gaussian model on the lattice

D~q,z!5
1

m0
21q̂2

, ~A4!

wherem0
25(122dz)/z and q̂i52 sinqi/2, in the following

way

Ĝe~q,z!5
D~q,z!

zee1~12ee!E @dq#dD~q,z!

, ~A5!

where the integration is done on the first Brillouin zone. T
knowledge of the singular behavior inz in the small-q region
in Eq. ~A5! makes it possible to determinate the critical pro
erties of the system in the monodisperse ensemble by
inverse Laplace transform.

For instance, the partition sumZ2N
e 5(xc2N

e (x), the mean
value of powers of components of the square distance f
the origin~or in the original system of the square distance
the two walkers! ^xk

2m&[@(xxk
2mc2N

e (x)#/Z2N
e , and the aver-

age number of contacts^n&5] ln(Z2N
e )/]e can be obtained by

inverse transformation from the following quantities:

Ĝe~0,z!5(
x

(
N50

`

zNcN
e ~x!, ~A6!

~21!m
]Ĝe~q,z!

]qk
2m U

q50

5(
x

(
N50

`

zNxk
2mcN

e ~x!, ~A7!

]Ĝe~0,z!

]e
5(

x
(
N50

`

zN
]cN

e ~x!

]e
. ~A8!

Because of the isotropy of the system, we write^xk
2m&

5^x2m&. If there were no interaction (e50), the critical be-
havior of the system would arise in the limitm0

2→0, corre-
sponding toz* 51/2d. We are interested in changes wi
respect to this critical behavior due to the interaction with
origin.
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It is immediately clear that a critical behavior that is d
ferent from that of free random walks case can appear in
cases: If the denominator in Eq.~A5! either vanishes or di-
verges atz<z* . The properties of the denominator a
deeply connected to the ones of the integral of the f
propagator,H(z).

It is easy to see that

H~z!5E @dq#dD~q,z!;H ~m0
2!d/221 for d,2

ln m0
2 for d52

finite for d.2

~A9!

so that the case in which the critical behavior is modifi
because of divergencies in the denominator atz5z* can
arise only ford<2.

A critical behavior that characterizes a collapsed~double-
stranded! phase arises when the relation

H@zc~e!#

zc~e!
5

1

12e2e
~A10!

can be satisfied forzc,z* , while an unstable fixed point is
reached when Eq.~A10! is satisfied forzc5z* and the sin-
gularity due to the interaction with the origin merges w
the one of the free propagator.

We observe thatH(z)/z is an increasing function ofz and
that limz→0H(z)/z51.3 For this reason, the above equatio
has no solution fore,0, the case of repulsive interactio
But in the regione>0 one can find a critical valuee* for
which Eq.~A10! is satisfied forzc(e* )5z* , with z* defined
above. Fore.e* the position ofzc(e) in Eq. ~A10! moves
closer to the origin, and lime→`zc(e)50. The point (e* ,z* )
is tricritical in the sense of having codimension 2~two con-
trol parameters have to be adjusted to obtain it!. Equation
~A10! gives the critical valuee* on the cubic lattice, which
was used in Sec. VI A

e* 52 lnF122 dHS 1

2dD G . ~A11!

Three kinds of critical behavior inz can be identified in any
dimensiond, the one for (e,e* ,z5z* ) in which the de-
nominator in~A5! does not vanish~molten phase!, the one in
the double-strandedphase governed by@e.e* ,z5zc(e)#,
and the one at the tricritical point (e* ,z* ), but the behavior
in the different regimes depends on the dimensionality.

~i! d<2. From geometrical arguments it is easy to see t
when the dimension of the space is smaller than the Ha
dorff dimension of the walk (dH51/n52) the probability
that the walker intersects a given point is finite. In this ca
the interaction with the origin results in a relevant perturb
tion that brings the system out of the universality class of
unperturbed case, as it appears from the critical behavio
m0

2→0 of H(z). The cased52 in which the dimension of
the space is equal to the dimension of the walk correspo
to a marginal interaction and logarithmic corrections app

3The assertion follows immediately from H(z)/z
5(N50

` zNcN
e50(0).
o

e

at
s-

e
-
e
or

ds
r

in the scaling laws. Equation~A10! has a solutionzc(e)
,z* for all values ofe.0, andzc(e)→0 when e→1`.
This means that in the attractive regime the free propag
alwaysstays finite when the denominator vanishes. In ot
words, there isno transition between two different regime
when the temperature is changed if the interaction is attr
tive. The system is in the double-stranded phase~or col-
lapsed onto the origin in the other view!. On the other hand
we can identify a phase transition when the sign of the in
action changes, namely ate* 50, and we will show that it is
a second-order one.

~ii ! d.2. In dimensiond.2 the presence of a zero
dimensional region that couples with the random walk int
duces an irrelevant operator. The integralH(z) takes a finite
value and its expansion around the singularityz* of the free
propagator has the form@34#

H~z!5 (
n50

`

Anm0
2n1C~m0

2!m0
d22 , m0

25~12z/z* !/z,

~A12!

whereAn are suitable constants andC(m0
2) is a function of

m0
2, which is finite form0

2→0, for d odd and diverges loga
rithmically for d even. The leading term inH(z)2H(z* ) for
dimension d,4 is given by the nonanalytic on
C(m0

2)m0
d22, it is m0

2ln(m0
2) for d54, and ford.4 it is given

by the analytic termm0
2. We will show that this gives rise to

a change in the order of the transition whend54 is crossed.

1. Molten phase

In d.2, for e,e* the critical behavior in the generatin
function is governed by the free propagatorD(q,z) whose
behavior aroundz* gives rise to the usual critical exponen
of the random walk, but with amplitudes depending one.
One can rewrite near the critical point

Ĝe~q,z!'
D~q,z!

z* ee1~12ee!H~z* !
~A13!

and, from the smallq critical behavior ofĜe(q,z) and of its
derivatives with respect toq and e, one can obtain the fol-
lowing scaling forms for large fixedN:

Partition sum,

Z2N
e '

z*

z* ee1~12ee!H~z* !
z* 22N; ~A14!

free energy per base pair,

f 5 lim
N→`

1

N
ln Z2N

e 5 ln z* 2, ~A15!

base-pair separation moment,

^x2m&'~2m21!!! z* m4mNm; ~A16!

average number of contacts,
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^n&'
ee@H~z* !2z* #

z* ee1~12ee!H~z* !
. ~A17!

In the limit e→e* 2 the mean number of contacts^n& and
the amplitude ofZ2N

e diverges

Z2N
e '

z*

ee* @H~z* !2z* #
~e* 2e!21z* 22N, ~A18!

^n&'~e* 2e!21. ~A19!

For d<2, instead, the singular behavior ofH(z) near z*
plays a role in the molten phase. Fore,e* 50, near the
singular region one has

Ĝe~q,z!'
D~q,z!

~12e!H~z!
~A20!

and the above scaling laws become

Z2N
e ;H ~12ee!21z* 22NNd/221 for d51

~12ee!21@ ln N#21z* 22N for d52,
~A21!

f 5 ln~z* 2!, ~A22!

^n&;
1

e2e21
, ~A23!

^x2m&;Nm ~A24!

from which the behavior fore→02 can be easily recovered

2. Double-stranded phase

Let us now study the collapsed phasee.e* . The denomi-
nator determines the critical behavior, since it vanishes
zc(e),z* , where the smallq behavior ofD(q,z) is not sin-
gular. Near the critical region the generating function can
rewritten as

Ĝe~q,z!'
D~q,z!

K~e!zc~e!@12z/zc~e!#
~A25!

where K(e)5(ee21)]H/]zuzc(e)2ee is positive. The de-

rivative with respect toe of ~A5! in the same limit reads

]Ĝe~q,z!

]e
'

ee$H@zc~e!#2zc~e!%

zc~e!2K2~e!@12z/zc~e!#2
D~q,z!.

~A26!

In the same way as the previous relations for the observa
have been recovered, one finds that

Z2N
e '

zc~e!22N

K~e!@12zc~e!/z* #
, ~A27!

f 5 ln@zc~e!2#, ~A28!
r

e

es

^x2m&'~2m21!!! m!
zc~e!m

@12zc~e!/z* #m
, ~A29!

^n&'
ee$H@zc~e!#2zc~e!%

zc~e!K~e!
N. ~A30!

It is interesting to study the limite→e* 1, whose com-
parison withe→e* 2 gives the order of the transition. Th
behavior of the denominator neare* and the way in which
zc(e) approachese* will be crucial.

We have to distinguish different cases with respect to
dimensionality of the space. Let us start withd.2. From Eq.
~A9! it follows that

zee* 1~12ee* !H~z!

;~12ee* !H ~12z/z* !d/221 for 2,d,4

~12z/z* !ln~12z/z* ! for d54

~12z/z* ! for d.4.

~A31!

From this relation it is a simple matter to get the behavior
z* 2zc(e) andK(e) for e*e*

z* 2zc~e!;H ~e2e* !2/(d22) for 2,d,4

~e2e* !@ ln~e2e* !#21 for d54

~e2e* ! for d.4,
~A32!

K~e!;H ~e2e* !(d24/d22) for 2,d,4

ln~e2e* ! for d54

constant ford.4.

~A33!

The shift exponentc, defined by

zc~e!5z* @12k~e2e* !1/c#, ~A34!

with k constant, can be read from the above relations~A32!
as a function ofd. Introducing the crossover exponentf

f5H d22

2
for 2,d<4

1 for d.4,

~A35!

the above relations can be rewritten in a more compact fo
namely, z* 2zc(e);(e2e* )1/f, K(e);(e2e* )(f21)/f,
both with the appropriate logarithmic correction ind54.
One can observe thatf coincides with the shift exponentc.
It follows that for e*e* ,

Z2N
e '

zc~e!22N

e2e*
, ~A36!

f ' ln~z* 2!1aH ~e2e* !1/f for dÞ4

~e2e* !@ ln~e2e* !#21 for d54,
~A37!
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^x2m&'~2m21!!!

3m! H ~e2e* !2m/f for dÞ4

@ ln~e2e* !#m~e2e* !2m for d54,
~A38!

^n&'ee* FH~z* !

b*
21GNH ~e2e* !(12f)f for dÞ4

@ ln~e2e* !#21 for d54.
~A39!

From ~A12! one sees immediately that the free energy ha
discontinuity in its first derivative ifd.4, i.e., the transition
is a first-order one.

On the other hand, a different critical behavior is expec
at the critical pointe5e* . In this special point the denomi
nator vanishes exactly atzc(e)5z* , the point in which the
free propagator has the smallq singularity. The behavior of
the denominator ofĜe* (q,z), its derivatives with respect to
q and ]eĜ

e(q,z)ue* for z near toz* , can be read from the
asymptotic expansion in~A31!.

Using the same exponentf defined above, the following
scaling laws hold:

Z2N
e* ;H z* 22NNf for dÞ4

z* 22NNf@ ln N#21 for d54,
~A40!

^x2m&;
~2m21!!! m!G~11f!z* m

G~m111f!
4mNm, ~A41!

^n&;H Nf for dÞ4

Nf@ ln N#21 for d54.
~A42!

The cased<2 can be handled in a similar way knowin
the behavior ofH(z) near toz* . The way in whichzc(e)
approachesz* andK(e) diverges whene→0 is given by
97
a

d

@z* 2zc~e!#;H e2/(22d) for d51

e2a/e for d52,
~A43!

K~e!;H e22/(22d) for d51

ea/ee for d52,
~A44!

with a positive constant. It follows that the above obser
ables in the limite→01 behave as

Z2N
e ;H z* 22N for d51

z* 22Ne21 for d52,
~A45!

f ' ln~z* 2!1cH e2 for d51

e2a/e for d52,
~A46!

^n&'NH e for d51

e2a/ee22 for d52.
~A47!

Taking the limit e→01 in Eq. ~A46! and e→02 in Eq.
~A22! it is a simple matter to see that the transition is
second-order one.

It is a simple matter to see the behavior at the tricritic
point. Ĝ0(q,z) becomes the free-generating function and
scaling laws that appear are the usual ones. The numbe
contacts can be simply recovered from the derivative of~A5!
with respect toe setting e50. This gives the well known
result

^n&;H N1/2 for d51

ln N for d52.
~A48!
a
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